Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1352023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766649

RESUMEN

Osteochondral defect (OCD) is a common but challenging condition in orthopaedics that imposes huge socioeconomic burdens in our aging society. It is imperative to accelerate the R&D of regenerative scaffolds using osteochondral tissue engineering concepts. Yet, all innovative implant-based treatments require animal testing models to verify their feasibility, biosafety, and efficacy before proceeding to human trials. Rabbit models offer a more clinically relevant platform for studying OCD repair than smaller rodents, while being more cost-effective than large animal models. The core-decompression drilling technique to produce full-thickness distal medial femoral condyle defects in rabbits can mimic one of the trauma-relevant OCD models. This model is commonly used to evaluate the implant's biosafety and efficacy of osteochondral dual-lineage regeneration. In this article, we initially indicate the methodology and describe a minimally-invasive surgical protocol in a step-wise manner to generate a standard and reproducible rabbit OCD for scaffold implantation. Besides, we provide a detailed procedure for sample collection, processing, and evaluation by a series of subsequent standardized biochemical, radiological, biomechanical, and histological assessments. In conclusion, the well-established, easy-handling, reproducible, and reliable rabbit OCD model will play a pivotal role in translational research of osteochondral tissue engineering.

2.
Am J Sports Med ; 52(6): 1596-1607, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581200

RESUMEN

BACKGROUND: Physiological 0.9% saline is commonly used as an irrigation fluid in modern arthroscopy. There is a growing body of evidence that a hyperosmolar saline solution has chondroprotective effects, especially if iatrogenic injury occurs. PURPOSE: To (1) corroborate the superiority of a hyperosmolar saline solution regarding chondrocyte survival after mechanical injury and (2) observe the modulatory response of articular cartilage to osmotic stress and injury. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral explants were isolated from bovine stifle joints and exposed to either 0.9% saline (308 mOsm) or hyperosmolar saline (600 mOsm) and then damaged with a sharp dermatome blade to attain a confined full-thickness cartilage injury site, incubated in the same fluids for another 3 hours, and transferred to chondropermissive medium for further culture for 1 week. Chondrocyte survival was assessed by confocal imaging, while the cellular response was evaluated over 1 week by relative gene expression for apoptotic and inflammatory markers and mediator release into the medium. RESULTS: The full-thickness cartilage cut resulted in a confined zone of cell death that mainly affected superficial zone chondrocytes. Injured samples that were exposed to hyperosmolar saline showed less expansion of cell death in both the axial (P < .007) and the coronal (P < .004) plane. There was no progression of cell death during the following week of culture. Histological assessment revealed an intact cartilage matrix and normal chondrocyte morphology. Inflammatory and proapoptotic genes were upregulated on the first days postexposure with a notable downregulation toward day 7. Mediator release into the medium was concentrated on day 3. CONCLUSION: This in vitro cartilage injury model provides further evidence for the chondroprotective effect of a hyperosmolar saline irrigation fluid, as well as novel data on the capability of articular cartilage to quickly regain joint homeostasis after osmotic stress and injury. CLINICAL RELEVANCE: Raising the osmolarity of an irrigating solution may be a simple and safe strategy to protect articular cartilage during arthroscopic surgery.


Asunto(s)
Cartílago Articular , Condrocitos , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/lesiones , Bovinos , Condrocitos/efectos de los fármacos , Presión Osmótica , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Irrigación Terapéutica , Solución Salina
3.
Biomater Biosyst ; 13: 100088, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38389863

RESUMEN

Novel cartilage regeneration therapies often look promising in-vitro but fail when implanted in vivo. One of the possible reasons for this discrepancy is the simplified, static in-vitro chondrogenesis models typically used. Complex mechanical stimulation plays a key role in physiological cartilage and chondrogenic cell metabolism, including the development of cartilage structure, yet it is routinely lacking during in-vitro studies. Multiaxial load bioreactors are becoming more widespread and offer advantages over more simple loading devices. Within this article, we highlight some of the important findings from in-vitro assays and key aspects relating to tribological loading of cartilage and chondrogenic cells.

4.
Regen Biomater ; 10: rbad084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936893

RESUMEN

The 3D printing process of fused deposition modelling is an attractive fabrication approach to create tissue-engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold's surface upon solvent removal, without the need for further post processing. Our aim is to create and characterize porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) and osteoconductive ß-tricalcium phosphate with and without the addition of elastic thermoplastic polyurethane prepared by solvent-based 3D-printing technique. Large-scale regenerative scaffolds can be 3D-printed with adequate fidelity and show porosity at multiple levels analysed via micro-computer tomography, scanning electron microscopy and N2 sorption. Superior mechanical properties compared to a commercially available calcium phosphate ink are demonstrated in compression and screw pull out tests. Biological assessments including cell activity assay and live-dead staining prove the scaffold's cytocompatibility. Osteoconductive properties are demonstrated by performing an osteogenic differentiation assay with primary human bone marrow mesenchymal stromal cells. We propose a versatile fabrication process to create porous 3D-printed scaffolds with adequate mechanical stability and osteoconductivity, both important characteristics for segmental mandibular bone reconstruction.

5.
Front Cell Dev Biol ; 11: 1258161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965582

RESUMEN

Introduction: Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are often combined with calcium phosphate (CaP)-based 3D-printed scaffolds with the goal of creating a bone substitute that can repair segmental bone defects. In vitro, the induction of osteogenic differentiation traditionally requires, among other supplements, the addition of ß-glycerophosphate (BGP), which acts as a phosphate source. The aim of this study is to investigate whether phosphate contained within the 3D-printed scaffolds can effectively be used as a phosphate source during hBM-MSC in vitro osteogenesis. Methods: hBM-MSCs are cultured on 3D-printed discs composed of poly (lactic-co-glycolic acid) (PLGA) and ß-tricalcium phosphate (ß-TCP) for 28 days under osteogenic conditions, with and without the supplementation of BGP. The effects of BGP removal on various cellular parameters, including cell metabolic activity, alkaline phosphatase (ALP) presence and activity, proliferation, osteogenic gene expression, levels of free phosphate in the media and mineralisation, are assessed. Results: The removal of exogenous BGP increases cell metabolic activity, ALP activity, proliferation, and gene expression of matrix-related (COL1A1, IBSP, SPP1), transcriptional (SP7, RUNX2/SOX9, PPARγ) and phosphate-related (ALPL, ENPP1, ANKH, PHOSPHO1) markers in a donor dependent manner. BGP removal leads to decreased free phosphate concentration in the media and maintained of mineral deposition staining. Discussion: Our findings demonstrate the detrimental impact of exogenous BGP on hBM-MSCs cultured on a phosphate-based material and propose ß-TCP embedded within 3D-printed scaffold as a sufficient phosphate source for hBM-MSCs during osteogenesis. The presented study provides novel insights into the interaction of hBM-MSCs with 3D-printed CaP based materials, an essential aspect for the advancement of bone tissue engineering strategies aimed at repairing segmental defects.

6.
J Orthop Translat ; 41: 42-53, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37691639

RESUMEN

Background: The use of acellular hydrogels to repair osteochondral defects requires cells to first invade the biomaterial and then to deposit extracellular matrix for tissue regeneration. Due to the diverse physicochemical properties of engineered hydrogels, the specific properties that allow or even improve the behaviour of cells are not yet clear. The aim of this study was to investigate the influence of various physicochemical properties of hydrogels on cell migration and related tissue formation using in vitro, ex vivo and in vivo models. Methods: Three hydrogel platforms were used in the study: Gelatine methacryloyl (GelMA) (5% wt), norbornene hyaluronic acid (norHA) (2% wt) and tyramine functionalised hyaluronic acid (THA) (2.5% wt). GelMA was modified to vary the degree of functionalisation (DoF 50% and 80%), norHA was used with varied degradability via a matrix metalloproteinase (MMP) degradable crosslinker and THA was used with the addition of collagen fibrils. The migration of human mesenchymal stromal cells (hMSC) in hydrogels was studied in vitro using a 3D spheroid migration assay over 48h. In addition, chondrocyte migration within and around hydrogels was investigated in an ex vivo bovine cartilage ring model (three weeks). Finally, tissue repair within osteochondral defects was studied in a semi-orthotopic in vivo mouse model (six weeks). Results: A lower DoF of GelMA did not affect cell migration in vitro (p â€‹= â€‹0.390) and led to a higher migration score ex vivo (p â€‹< â€‹0.001). The introduction of a MMP degradable crosslinker in norHA hydrogels did not improve cell infiltration in vitro or in vivo. The addition of collagen to THA resulted in greater hMSC migration in vitro (p â€‹= â€‹0.031) and ex vivo (p â€‹< â€‹0.001). Hydrogels that exhibited more cell migration in vitro or ex vivo also showed more tissue formation in the osteochondral defects in vivo, except for the norHA group. Whereas norHA with a degradable crosslinker did not improve cell migration in vitro or ex vivo, it did significantly increase tissue formation in vivo compared to the non-degradable crosslinker (p â€‹< â€‹0.001). Conclusion: The modification of hydrogels by adapting DoF, use of a degradable crosslinker or including fibrillar collagen can control and improve cell migration and tissue formation for osteochondral defect repair. This study also emphasizes the importance of performing both in vitro and in vivo testing of biomaterials, as, depending on the material, the results might be affected by the model used.The translational potential of this article: This article highlights the potential of using acellular hydrogels to repair osteochondral defects, which are common injuries in orthopaedics. The study provides a deeper understanding of how to modify the properties of hydrogels to control cell migration and tissue formation for osteochondral defect repair. The results of this article also highlight that the choice of the used laboratory model can affect the outcome. Testing hydrogels in different models is thus advised for successful translation of laboratory results to the clinical application.

7.
J Mol Graph Model ; 125: 108587, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37579519

RESUMEN

The glucocorticoid receptor (GR) is a nuclear receptor that controls critical biological processes by regulating the transcription of specific genes. GR transcriptional activity is modulated by a series of ligands and coenzymes, where a ligand can act as an agonist or antagonist. GR agonists, such as the glucocorticoids dexamethasone (DEX) and prednisolone, are widely prescribed to patients with inflammatory and autoimmune diseases. DEX is also used to induce osteogenic differentiation in vitro. Recently, it has been highlighted that DEX induces changes in the osteogenic differentiation of human mesenchymal stromal cells by downregulating the transcription factor SRY-box transcription factor 9 (SOX9) and upregulating the peroxisome proliferator-activated receptor γ (PPARG). SOX9 is fundamental in the control of chondrogenesis, but also in osteogenesis by acting as a dominant-negative of RUNX2. Many processes remain to be clarified during cell fate determination, such as the interplay between the key transcription factors. The main objective pursued by this work is to shed light on the interaction between GR and SOX9 in the presence and absence of DEX at an atomic level of resolution using molecular dynamics simulations. The outcome of this research could help the understanding of possible molecular interactions between GR and SOX9 and their role in the determination of cell fate. The results highlight the key residues at the interface between GR and SOX9 involved in the complexation process and shed light on the mechanism through which DEX modulates GR-SOX9 binding and exerts its biological activity.


Asunto(s)
Dexametasona , Receptores de Glucocorticoides , Humanos , Receptores de Glucocorticoides/genética , Dexametasona/farmacología , Simulación de Dinámica Molecular , Osteogénesis/genética , Factores de Transcripción/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo
8.
iScience ; 26(7): 107092, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37408683

RESUMEN

Cartilage tissue engineering necessitates the right mechanical cues to regenerate impaired tissue. For this reason, bioreactors can be employed to induce joint-relevant mechanical loading, such as compression and shear. However, current articulating joint bioreactor designs are lacking in terms of sample size and usability. In this paper, we describe a new, simple-to-build and operate, multi-well kinematic load bioreactor and investigate its effect on the chondrogenic differentiation of human bone marrow-derived stem cells (MSCs). We seeded MSCs into a fibrin-polyurethane scaffold and subsequently exposed the samples to a combination of compression and shear for 25 days. The mechanical loading activates transforming growth factor beta 1, upregulates chondrogenic genes, and increases sulfated glycosaminoglycan retention within the scaffolds. Such a higher-throughput bioreactor could be operated in most cell culture laboratories, dramatically accelerating and improving the testing of cells, new biomaterials, and tissue-engineered constructs.

9.
PLoS One ; 18(5): e0285770, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37172030

RESUMEN

Pneumonia, always a major malady, became the main public health and economic disaster of historical proportions with the COVID-19 pandemic. This study was based on a premise that pathology of lung metabolism in inflammation may have features invariant to the nature of the underlying cause. Amino acid uptake by the lungs was measured from plasma samples collected pre-terminally from a carotid artery and vena cava in mice with bleomycin-induced lung inflammation (N = 10) and compared to controls treated with saline instillation (N = 6). In the control group, the difference in concentrations between the arterial and venous blood of the 19 amino acids measured reached the level of statistical significance only for arginine (-10.7%, p = 0.0372) and phenylalanine (+5.5%, p = 0.0266). In the bleomycin group, 11 amino acids had significantly lower concentrations in the arterial blood. Arginine concentration was decreased by 21.1% (p<0.0001) and only that of citrulline was significantly increased (by 20.1%, p = 0.0002). Global Arginine Bioavailability Ratio was decreased in arterial blood by 19.5% (p = 0.0305) in the saline group and by 30.4% (p<0.0001) in the bleomycin group. Production of nitric oxide (NO) and citrulline from arginine by the inducible nitric oxide synthase (iNOS) is greatly increased in the immune system's response to lung injury. Deprived of arginine, the endothelial cells downstream may fail to provide enough NO to prevent the activation of thrombocytes. Thrombotic-related vascular dysfunction is a defining characteristic of pneumonia, including COVID-19. This experiment lends further support to arginine replacement as adjuvant therapy in pneumonia.


Asunto(s)
COVID-19 , Neumonía , Ratones , Humanos , Animales , Arginina/metabolismo , Bleomicina/toxicidad , Células Endoteliales/metabolismo , Citrulina/metabolismo , Pandemias , COVID-19/patología , Pulmón/patología , Neumonía/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo
10.
iScience ; 26(1): 105808, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36619982

RESUMEN

The early postnatal limb developmental progression bridges embryonic and mature stages and mirrors the pathological remodeling of articular cartilage. However, compared with multitudinous research on embryonic limb development, the early postnatal stage seems relatively unnoticed. Here, a systematic work to portray the postnatal limb developmental landscape was carried out by characterization of 19,952 single cells from murine hindlimbs at 4 postnatal stages using single-cell RNA sequencing technique. By delineation of cell heterogeneity, the candidate progenitor sub-clusters marked by Cd34 and Ly6e were discovered in articular cartilage and enthesis, and three cellular developmental branches marked by Col10a1, Spp1, and Tnni2 were reflected in growth plate. The representative transcriptomes and developmental patterns were intensively explored, and the key regulation mechanisms as well as evolvement in osteoarthritis were discussed. Above all, these results expand horizons of postnatal limb developmental biology and reach the interconnections between limb development, remodeling, and regeneration.

11.
Gene ; 856: 147140, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36574933

RESUMEN

The labrum is a fibrocartilaginous ring surrounding the acetabulum. Loss of labrum function contributes to the degeneration of the hip joint, leading to osteoarthritis. Successful labrum restoration requires profound knowledge about the tissue being replaced. The aim of this study was to characterize the transcriptome and the mechanobiological function of the labrum. RNA-seq was performed to compare the transcriptome of bovine labrum against articular cartilage tissue. Differential expression and gene ontology (GO) term pathway analysis were applied using the SUSHI framework. Bovine labrum explants were cultured for 5 days with / without mechanical loading and targeted gene expression was analyzed by real time quantitative polymerase chain reaction. More than 6'000 genes were significantly differentially expressed in the labrum compared to cartilage. Up- and downregulated genes were associated with the GO term extracellular matrix organization. The study established an extracellular matrix gene expression profile of healthy labrum tissue and identified significantly upregulated extracellular matrix related genes compared to cartilage tissue. Mechanical loading significantly upregulated aggrecan (ACAN), cartilage oligomeric matrix protein (COMP), fibronectin (FN1) and proteoglycan 4 (PRG4). MMP1/3/9 and IL6, which were upregulated by an inflammatory stimulus (IL-1b), were statistically unaffected by the loading, although IL6 was upregulated in each donor immediately after the loading. Unique ECM related features may guide the development of labrum tissue-engineering solutions. Despite the transcriptome differences between labrum and cartilage tissue, gene expression response to mechanical loading showed similarities with previously reported responses in cartilage, indicating a preserved tissue adaptation mechanism to mechanical loading. Running title: Acetabular Labrum Mechanobiology.


Asunto(s)
Cartílago Articular , Transcriptoma , Animales , Bovinos , Acetábulo/metabolismo , Cartílago Articular/metabolismo , Articulación de la Cadera/fisiología , Interleucina-6/metabolismo
12.
Methods Mol Biol ; 2598: 1-7, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36355280

RESUMEN

Once damaged, cartilage has limited healing capability. This has led to a huge body of research that aims to repair or regenerate this important tissue. Despite the progress made, significant hurdles still need to be overcome. This chapter highlights some of the progress made, while elaborating on areas that need further research. The concept of translation and the route to clinical translation must be kept in mind if some of the promising preclinical research is to make it to routine clinical application.


Asunto(s)
Cartílago Articular , Ingeniería de Tejidos , Medicina Regenerativa , Andamios del Tejido
13.
Methods Mol Biol ; 2598: 65-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36355285

RESUMEN

Bone marrow-derived mesenchymal stromal cells (BM-MSC) are widely studied in the field of cartilage regeneration due to their capacity to differentiate into chondrocytes under specific in vitro culture conditions. This chapter describes the isolation of MSC from bone marrow aspirate, their expansion in monolayer, and the chondrogenic differentiation in pellet culture.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Humanos , Células de la Médula Ósea , Condrogénesis , Diferenciación Celular , Condrocitos , Células Cultivadas
14.
Methods Mol Biol ; 2598: 177-186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36355292

RESUMEN

Co-culturing is an essential method for unravelling the importance of cross talk and cellular interaction. This chapter describes the preparation of an indirect co-culture technique based on encapsulation of chondrocytes and mesenchymal stromal cells in polyurethane scaffolds and alginate beads, respectively. This way, both cell populations can communicate through paracrine effects in the absence of cell-cell contact. Due to the mechanical properties of polyurethane, this model can be employed in mechanobiology studies. The resulting engineered cultures can provide a more realistic environment, recreating the complex joints' microenvironment and physiology.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Humanos , Condrocitos , Técnicas de Cocultivo , Alginatos , Poliuretanos , Células Cultivadas , Ingeniería de Tejidos/métodos
15.
J Orthop Res ; 41(4): 834-844, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35953282

RESUMEN

Autologous cancellous bone graft is the gold standard in large bone defect repair. However, studies using autologous bone grafting in rats are rare. To determine the feasibility of autologous cancellous bone graft harvest from different anatomical donor sites (humerus, ilium, femur, tibia, and tail vertebrae) in rats and compare their suitability as donor sites, a total of 13 freshly euthanized rats were used to describe the surgical technique, determine the cancellous bone volume and microstructure, and compare the cancellous bone collected quantitatively and qualitatively. It was feasible to harvest cancellous bone grafts from all five anatomical sites with the humerus and tail being more surgically challenging. The microstructural analysis using micro-computed tomography showed a significantly lower bone volume fraction, bone mineral density, and trabecular thickness of the humerus and iliac crest compared to the femur, tibia, and tail vertebrae. The harvested weight and volume did not differ between the donor sites. All donor sites apart from the femur yielded primary osteogenic cells confirmed by the presence of alkaline phosphatase and Alizarin Red S stain. Bone samples from the iliac crest showed the most consistent outgrowth of osteoprogenitor cells. In conclusion, the tibia and iliac crest may be the most favorable donor sites considering the surgical approach. However, due to the differences in microstructure of the cancellous bone and the consistency of outgrowth of osteoprogenitor cells, the donor sites may have different healing properties, that need further investigation in an in vivo study.


Asunto(s)
Trasplante Óseo , Hueso Esponjoso , Recolección de Tejidos y Órganos , Sitio Donante de Trasplante , Hueso Esponjoso/trasplante , Microtomografía por Rayos X , Ratas , Animales , Ilion/trasplante , Trasplante Autólogo , Trasplante Óseo/métodos , Estudios de Factibilidad , Fémur , Húmero , Tibia
16.
Aging Cell ; 22(1): e13759, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36536521

RESUMEN

Mesenchymal-derived stromal or progenitor cells, commonly called "MSCs," have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Células Madre Mesenquimatosas/metabolismo , Citocinas/metabolismo , MicroARNs/metabolismo , Diferenciación Celular , Vesículas Extracelulares/metabolismo
17.
Bioact Mater ; 20: 627-637, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35846845

RESUMEN

Neutrophils play a pivotal role in orchestrating the immune system response to biomaterials, the onset and resolution of chronic inflammation, and macrophage polarization. However, the neutrophil response to biomaterials and the consequent impact on tissue engineering approaches is still scarcely understood. Here, we report an in vitro culture model that comprehensively describes the most important neutrophil functions in the light of tissue repair. We isolated human primary neutrophils from peripheral blood and exposed them to a panel of hard, soft, naturally- and synthetically-derived materials. The overall trend showed increased neutrophil survival on naturally derived constructs, together with higher oxidative burst, decreased myeloperoxidase and neutrophil elastase and decreased cytokine secretion compared to neutrophils on synthetic materials. The culture model is a step to better understand the immune modulation elicited by biomaterials. Further studies are needed to correlate the neutrophil response to tissue healing and to elucidate the mechanism triggering the cell response and their consequences in determining inflammation onset and resolution.

18.
Acta Biomater ; 156: 177-189, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988660

RESUMEN

Understanding the optimal conditions required for bone healing can have a substantial impact to target the problem of non-unions and large bone defects. The combination of bioactive factors, regenerative progenitor cells and biomaterials to form a tissue engineered (TE) complex is a promising solution but translation to the clinic has been slow. We hypothesized the typical material testing algorithm used is insufficient and leads to materials being mischaracterized as promising. In the first part of this study, human bone marrow - derived mesenchymal stromal cells (hBM-MSCs) were embedded in three commonly used biomaterials (hyaluronic acid methacrylate, gelatin methacrylate and fibrin) and combined with relevant bioactive osteogenesis factors (dexamethasone microparticles and polyphosphate nanoparticles) to form a TE construct that underwent in vitro osteogenic differentiation for 28 days. Gene expression of relevant transcription factors and osteogenic markers, and von Kossa staining were performed. In the second and third part of this study, the same combination of TE constructs were implanted subcutaneously (cell containing) in T cell-deficient athymic Crl:NIH-Foxn1rnu rats for 8 weeks or cell free in an immunocompetent New Zealand white rabbit calvarial model for 6 weeks, respectively. Osteogenic performance was investigated via MicroCT imaging and histology staining. The in vitro study showed enhanced upregulation of relevant genes and significant mineral deposition within the three biomaterials, generally considered as a positive result. Subcutaneous implantation indicates none to minor ectopic bone formation. No enhanced calvarial bone healing was detected in implanted biomaterials compared to the empty defect. The reasons for the poor correlation of in vitro and in vivo outcomes are unclear and needs further investigation. This study highlights the discrepancy between in vitro and in vivo outcomes, demonstrating that in vitro data should be interpreted with extreme caution. In vitro models with higher complexity are necessary to increase value for translational studies. STATEMENT OF SIGNIFICANCE: Preclinical testing of newly developed biomaterials is a crucial element of the development cycle. Despite this, there is still significant discrepancy between in vitro and in vivo test results. Within this study we investigate multiple combinations of materials and osteogenic stimulants and demonstrate a poor correlation between the in vitro and in vivo data. We propose rationale for why this may be the case and suggest a modified testing algorithm.


Asunto(s)
Sustitutos de Huesos , Células Madre Mesenquimatosas , Ratas , Humanos , Animales , Conejos , Osteogénesis/fisiología , Sustitutos de Huesos/farmacología , Sustitutos de Huesos/metabolismo , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/metabolismo , Ingeniería de Tejidos , Diferenciación Celular/fisiología , Andamios del Tejido
19.
Stem Cell Res Ther ; 13(1): 533, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575539

RESUMEN

BACKGROUND: Bone marrow mesenchymal stromal cells (BMSCs) are promising for therapeutic use in cartilage repair, because of their capacity to differentiate into chondrocytes. Often, in vitro differentiation protocols employ the use of high amount of glucose, which does not reflect cartilage physiology. For this reason, we investigated how different concentrations of glucose can affect the chondrogenic differentiation of BMSCs in cell culture pellets. Additionally, we investigated how fructose could influence the chondrogenic differentiation in vitro. METHODS: BMSC were isolated from six donors and cultured in DMEM containing glucose at either 25 mM (HG), 5.5 mM (LG) or 1 mM (LLG), and 1% non-essential amino acids, 1% ITS+, in the presence of 100 nM dexamethasone, 50 µg/ml ascorbic acid-2 phosphate and 10 ng/ml TGF-ß1. To investigate the effect of different metabolic substrates, other groups were exposed to additional 25 mM fructose. The media were replaced every second day until day 21 when all the pellets were harvested for further analyses. Biochemical analysis for glycosaminoglycans into pellets and released in medium was performed using the DMMB method. Expression of GLUT3 and GLUT5 was assayed by qPCR and validated using FACS analysis and immunofluorescence in monolayer cultures. Chondrogenic differentiation was further confirmed by qPCR analysis of COL2A1, COL1A1, COL10A1, ACAN, RUNX2, SOX9, SP7, MMP13, and PPARG, normalized on RPLP0. Type 2 collagen expression was subsequently validated by immunofluorescence analysis. RESULTS: We show for the first time the presence of fructose transporter GLUT5 in BMSC and its regulation during chondrogenic commitment. Additionally, decreasing glucose concentration during chondrogenesis dramatically decreased the yield of differentiation. However, the use of fructose alone or together with low glucose concentrations does not limit cell differentiation, but on the contrary it might help in maintaining a stable chondrogenic phenotype comparable with the standard culture conditions (high glucose). CONCLUSION: This study provides evidence that BMSC express GLUT5 and differentially regulate GLUT3 in the presence of glucose variation. This study gives a better comprehension of BMSCs sugar use during chondrogenesis.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Humanos , Transportador de Glucosa de Tipo 3/metabolismo , Condrogénesis , Glucosa/farmacología , Glucosa/metabolismo , Fructosa/farmacología , Fructosa/metabolismo , Condrocitos/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas , Células de la Médula Ósea
20.
Front Bioeng Biotechnol ; 10: 998774, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36329702

RESUMEN

Chondrogenic models utilizing human mesenchymal stromal cells (hMSCs) are often simplistic, with a single cell type and the absence of mechanical stimulation. Considering the articulating joint as an organ it would be beneficial to include more complex stimulation. Within this study we applied clinically relevant kinematic load to biphasic constructs. In each case, the upper layer consisted of fibrin embedded hMSCs retained within an elastomeric polyurethane (PU) scaffold. These were randomly assigned to five base scaffolds, a cell-free fibrin PU base, viable bone, decellularized bone, 3D printed calcium phosphate or clinically used cement. This allowed the study of cross talk between viable bone and chondrogenically differentiating MSCs, while controlling for the change in stiffness of the base material. Data obtained showed that the bulk stiffness of the construct was not the defining factor in the response obtained, with viable and decellularized bone producing similar results to the softer PU base. However, the stiff synthetic materials led to reduced chondrogenesis and increased calcification in the upper MSC seeded layer. This demonstrates that the underlying base material must be considered when driving chondrogenesis of human cells using a clinically relevant loading protocol. It also indicates that the material used for bony reconstruction of osteochondral defects may influence subsequent chondrogenic potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA