Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 13: 418, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22916712

RESUMEN

BACKGROUND: Acute lymphoblastic leukemia (ALL) cells treated with drugs can become drug-tolerant if co-cultured with protective stromal mouse embryonic fibroblasts (MEFs). RESULTS: We performed transcriptional profiling on these stromal fibroblasts to investigate if they were affected by the presence of drug-treated ALL cells. These mitotically inactivated MEFs showed few changes in gene expression, but a family of sequences of which transcription is significantly increased was identified. A sequence related to this family, which we named cassini, was selected for further characterization. We found that cassini was highly upregulated in drug-treated ALL cells. Analysis of RNAs from different normal mouse tissues showed that cassini expression is highest in spleen and thymus, and can be further enhanced in these organs by exposure of mice to bacterial endotoxin. Heat shock, but not other types of stress, significantly induced the transcription of this locus in ALL cells. Transient overexpression of cassini in human 293 embryonic kidney cells did not increase the cytotoxic or cytostatic effects of chemotherapeutic drugs but provided some protection. Database searches revealed that sequences highly homologous to cassini are present in rodents, apicomplexans, flatworms and primates, indicating that they are conserved in evolution. Moreover, CASSINI RNA was induced in human ALL cells treated with vincristine. Surprisingly, cassini belongs to the previously reported murine family of γ-satellite/major satellite DNA sequences, which were not known to be present in other species. CONCLUSIONS: Our results show that the transcription of at least one member of these sequences is regulated, suggesting that this has a function in normal and transformed immune cells. Expression of these sequences may protect cells when they are exposed to specific stress stimuli.


Asunto(s)
Proteínas/metabolismo , ARN/metabolismo , Animales , Antineoplásicos Fitogénicos/toxicidad , Apicomplexa , Evolución Biológica , Línea Celular Tumoral , Técnicas de Cocultivo , Bases de Datos Genéticas , Endotoxinas/toxicidad , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Sitios Genéticos , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Platelmintos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Células Precursoras de Linfocitos B/efectos de los fármacos , Células Precursoras de Linfocitos B/metabolismo , Primates , Proteínas/genética , Pirimidinas/toxicidad , ARN/análisis , ARN/genética , Temperatura , Transfección , Regulación hacia Arriba/efectos de los fármacos , Vincristina/toxicidad
2.
Oncoimmunology ; 1(5): 618-629, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22934254

RESUMEN

Although cure rates for acute lymphoblastic leukemia (ALL) have increased, development of resistance to drugs and patient relapse are common. The environment in which the leukemia cells are present during the drug treatment is known to provide significant survival benefit. Here, we have modeled this process by culturing murine Bcr/Abl-positive acute lymphoblastic leukemia cells in the presence of stroma while treating them with a moderate dose of two unrelated drugs, the farnesyltransferase inhibitor lonafarnib and the tyrosine kinase inhibitor nilotinib. This results in an initial large reduction in cell viability of the culture and inhibition of cell proliferation. However, after a number of days, cell death ceases and the culture becomes drug-tolerant, enabling cell division to resume. Using gene expression profiling, we found that the development of drug resistance was accompanied by massive transcriptional upregulation of genes that are associated with general inflammatory responses such as the metalloproteinase MMP9. MMP9 protein levels and enzymatic activity were also increased in ALL cells that had become nilotinib-tolerant. Activation of p38, Akt and Erk correlated with the development of environment-mediated drug resistance (EMDR), and inhibitors of Akt and Erk in combination with nilotinib reduced the ability of the cells to develop resistance. However, inhibition of p38 promoted increased resistance to nilotinib. We conclude that development of EMDR by ALL cells involves changes in numerous intracellular pathways. Development of tolerance to drugs such as nilotinib may therefore be circumvented by simultaneous treatment with other drugs having divergent targets.

3.
Mol Cancer Ther ; 9(5): 1318-27, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20388735

RESUMEN

The emergence of resistance to tyrosine kinase inhibitors due to point mutations in Bcr/Abl is a challenging problem for Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukemia (ALL) patients, especially for those with the T315I mutation, against which neither nilotinib or dasatinib shows significant activity. VX-680 is a pan-Aurora kinase inhibitor active against all Bcr/Abl proteins but has not been extensively examined in preclinical models of Ph-positive ALL. Here, we have tested VX-680 for the treatment of Bcr/Abl-positive ALL when leukemic cells are protected by the presence of stroma. Under these conditions, VX-680 showed significant effects on primary human Ph-positive ALL cells both with and without the T315I mutation, including ablation of tyrosine phosphorylation downstream of Bcr/Abl, decreased viability, and induction of apoptosis. However, drug treatment of human Ph-positive ALL cells for 3 days followed by drug removal allowed the outgrowth of abnormal cells 21 days later, and on culture of mouse Bcr/Abl ALL cells on stroma with lower concentrations of VX-680, drug-resistant cells emerged. Combined treatment of human ALL cells lacking the T315I mutation with both VX-680 and dasatinib caused significantly more cytotoxicity than each drug alone. We suggest that use of VX-680 together with a second effective drug as first-line treatment for Ph-positive ALL is likely to be safer and more useful than second-line treatment with VX-680 as monotherapy for drug-resistant T315I Ph-positive ALL.


Asunto(s)
Proteínas de Fusión bcr-abl/genética , Piperazinas/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Aurora Quinasas , Células Cultivadas , Dasatinib , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Embrión de Mamíferos , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Ratones , Ratones Noqueados , Piperazinas/administración & dosificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Tiazoles/administración & dosificación , Tiazoles/farmacología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA