Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 740, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29453353

RESUMEN

The original version of this Article incorrectly referenced the Figures in the Supplementary Information. References in the main Article to Supplementary Figure 7 through to Supplementary Figure 20 were previously incorrectly cited as Supplementary Figure 5 through to Supplementary Figure 18, respectively. This has now been corrected in both the PDF and HTML versions of the Article.

2.
Nat Commun ; 8(1): 1588, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150611

RESUMEN

The Transantarctic Mountains (TAM) are the world's longest rift shoulder but the source of their high elevation is enigmatic. To discriminate the importance of mechanical vs. thermal sources of support, a 550 km-long transect of magnetotelluric geophysical soundings spanning the central TAM was acquired. These data reveal a lithosphere of high electrical resistivity to at least 150 km depth, implying a cold stable state well into the upper mantle. Here we find that the central TAM most likely are elevated by a non-thermal, flexural cantilever mechanism which is perhaps the most clearly expressed example anywhere. West Antarctica in this region exhibits a low resistivity, moderately hydrated asthenosphere, and concentrated extension (rift necking) near the central TAM range front but with negligible thermal encroachment into the TAM. Broader scale heat flow of east-central West Antarctica appears moderate, on the order of 60-70 mW m-2, lower than that of the U.S. Great Basin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...