Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Can J Physiol Pharmacol ; 102(4): 293-304, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976473

RESUMEN

Sclerostin, a potent inhibitor of the Wnt signaling pathway, plays a critical role in bone homeostasis. Evidence suggests that sclerostin may also be involved in crosstalk between other tissues, including muscle. This pilot study attempted to examine the effects of sclerostin on soleus and extensor digitorum longus (EDL) muscle tissue from male mice that were given continuous recombinant sclerostin injections for 4 weeks. A total of 48 10-week-old male C57BL/6J mice were assigned to be sedentary or perform 1 h treadmill running per day for 4 weeks and administered subcutaneous injections of either saline or recombinant sclerostin 5 days/week. Sclerostin injection led to a reduction in the soleus myosin heavy chain (MHC) I, MHC I/IIA, MHC IIA/X, and MHC IIB cross-sectional area (p < 0.05) with no exercise effects on these reductions. In contrast, there were no effects of sclerostin injections or exercise on the fast-twitch EDL muscle in terms of size, MHC protein, or markers of Wnt signaling. These findings provide preliminary evidence of sclerostin's endocrine role in muscle via decreases in myofiber cross-sectional area, which seems to be independent of fiber type but muscle type-specific. More studies, however, are needed to confirm these preliminary results.


Asunto(s)
Fibras Musculares de Contracción Rápida , Músculo Esquelético , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Proyectos Piloto
2.
J Bone Miner Res ; 38(4): 541-555, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36606556

RESUMEN

Sclerostin is an inhibitor of the osteogenic Wnt/ß-catenin signaling pathway that also has an endocrine role in regulating adipocyte differentiation and metabolism. Additionally, subcutaneous white adipose tissue (scWAT) sclerostin content decreases following exercise training (EXT). Therefore, we hypothesized that EXT-induced reductions in adipose tissue sclerostin may play a role in regulating adaptations in body composition and whole-body metabolism. To test this hypothesis, 10-week-old male C57BL/6J mice were either sedentary (SED) or performing 1 hour of treadmill running at ~65% to 70% maximum oxygen consumption (VO2max ) 5 day/week (EXT) for 4 weeks and had subcutaneous injections of either saline (C) or recombinant sclerostin (S) (0.1 mg/kg body mass) 5 day/week; thus, making four groups (SED-C, EXT-C, SED-S, and EXT-S; n = 12/group). No differences in body mass were observed between experimental groups, whereas food intake was higher in EXT (p = 0.03) and S (p = 0.08) groups. There was a higher resting energy expenditure in all groups compared to SED-C. EXT-C had increased lean mass and decreased fat mass percentage compared to SED-C and SED-S. No differences in body composition were observed in either the SED-S or EXT-S groups. Lower scWAT (inguinal), epididymal white adipose tissue (eWAT) (visceral epididymal) mass, and scWAT adipocyte cell size and increased percentage of multilocular cells in scWAT were observed in the EXT-C group compared to SED-C, whereas lower eWAT was only observed in the EXT-S group. EXT mice had increased scWAT low-density lipoprotein receptor-related protein 4 (Lrp4) and mitochondrial content and sclerostin treatment only inhibited increased Lrp4 content with EXT. Together, these results provide evidence that reductions in resting sclerostin with exercise training may influence associated alterations in energy metabolism and body composition, particularly in scWAT. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Condicionamiento Físico Animal , Animales , Masculino , Ratones , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Composición Corporal , Ratones Endogámicos C57BL , Condicionamiento Físico Animal/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
Pediatr Exerc Sci ; 35(1): 41-47, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35894972

RESUMEN

This study examined differences in resting concentrations of markers of bone formation and resorption, and osteokines between female adolescent (12-16 y) swimmers, soccer players, and nonathletic controls. Resting, morning blood samples were obtained after an overnight fast from 20 swimmers, 20 soccer players, and 20 nonathletic controls, matched for age. carboxyl-terminal cross-linking telopeptide of type I collagen (CTX), amino-terminal propeptide of type I collagen (P1NP), total osteocalcin (OC), sclerostin, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa B ligand (RANKL) were analyzed in serum. After controlling for percent body fat, there were no significant differences between swimmers and nonathletic controls in any of the measured markers. In contrast, soccer players had significantly higher P1NP (89.5 [25.6] ng·mL-1), OC (57.6 [22.9] ng·mL-1), and OPG (1052.5 [612.6] pg·mL-1) compared with both swimmers (P1NP: 66.5 [20.9] ng·mL-1; OC: 24.9 [12.5] ng·mL-1; OPG: 275.2 [83.8] pg·mL-1) and controls (P1NP: 58.5 [16.2] ng·mL-1; OC: 23.2 [11.9] ng·mL-1; OPG: 265.4 [97.6] pg·mL-1), with no differences in CTX, sclerostin, and RANKL. These results suggest that bone formation is higher in adolescent females engaged in high-impact sports like soccer compared with swimmers and controls.


Asunto(s)
Colágeno Tipo I , Deportes , Humanos , Femenino , Adolescente , Biomarcadores , Atletas , Remodelación Ósea , Osteocalcina
4.
Physiol Rep ; 10(6): e15232, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35312183

RESUMEN

Sclerostin is a Wnt/ß-catenin antagonist, mainly secreted by osteocytes, and most known for its role in reducing bone formation. Studies in rodents suggest sclerostin can also regulate adipose tissue mass and metabolism, representing bone-adipose tissue crosstalk. Exercise training has been shown to reduce plasma sclerostin levels; but the effects of exercise on sclerostin and Wnt/ß-catenin signaling specifically within adipose tissue has yet to be examined. The purpose of this study was to examine subcutaneous WAT (scWAT) sclerostin content and Wnt signaling in response to exercise training in young men with obesity. To this end, 7 male participants (BMI = 35 ± 4; 25 ± 4 years) underwent 4 weeks of sprint interval training (SIT) involving 4 weekly sessions consisting of a 5-min warmup, followed by 8 × 20 s intervals at 170% of work rate at VO2peak , separated by 10 s of rest. Serum and scWAT were sampled at rest both pre- and post-SIT. Despite no changes in serum sclerostin levels, we found a significant decrease in adipose sclerostin content (-37%, p = 0.04), an increase in total ß-catenin (+52%, p = 0.03), and no changes in GSK3ß serine 9 phosphorylation. There were also concomitant reductions in serum TNF-α (-0.36 pg/ml, p = 0.03) and IL-6 (-1.44 pg/ml, p = 0.05) as well as an increase in VO2peak (+5%, p = 0.03) and scWAT COXIV protein content (+95%, p = 0.04). In conclusion, scWAT sclerostin content was reduced and ß-catenin content was increased following SIT in young men with excess adiposity, suggesting a role of sclerostin in regulating human adipose tissue in response to exercise training.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , beta Catenina , Humanos , Masculino , Obesidad/terapia , Grasa Subcutánea/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
5.
Front Physiol ; 13: 1061715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685192

RESUMEN

Introduction: It is well established that sclerostin antagonizes the anabolic Wnt signalling pathway in bone, however, its physiological role in other tissues remains less clear. This study examined the effect of a high-fat diet (HFD) on sclerostin content and downstream markers of the Wnt signaling pathway (GSK3ß and ß-catenin) within subcutaneous inguinal white adipose tissue (iWAT), and visceral epididymal WAT (eWAT) depots at rest and in response to acute aerobic exercise. Methods: Male C57BL/6 mice (n = 40, 18 weeks of age) underwent 10 weeks of either a low-fat diet (LFD) or HFD. Within each diet group, mice were assigned to either remain sedentary (SED) or perform 2 h of endurance treadmill exercise at 15 m min-1 with 5° incline (EX), creating four groups: LFD + SED (N = 10), LFD + EX (N = 10), HFD + SED (N = 10), and HFD + EX (N = 10). Serum and WAT depots were collected 2 h post-exercise. Results: Serum sclerostin showed a diet-by-exercise interaction, reflecting HFD + EX mice having higher concentration than HFD + SED (+31%, p = 0.03), and LFD mice being unresponsive to exercise. iWAT sclerostin content decreased post-exercise in both 28 kDa (-31%, p = 0.04) and 30 kDa bands (-36%, main effect for exercise, p = 0.02). iWAT ß-catenin (+44%, p = 0.03) and GSK3ß content were higher in HFD mice compared to LFD (+128%, main effect for diet, p = 0.005). Monomeric sclerostin content was abolished in eWAT of HFD mice (-96%, main effect for diet, p < 0.0001), was only detectable as a 30 kDa band in LFD mice and was unresponsive to exercise. ß-catenin and GSK3ß were both unresponsive to diet and exercise within eWAT. Conclusion: These results characterized sclerostin's content to WAT depots in response to acute exercise, which appears to be specific to a reduction in iWAT and identified a differential regulation of sclerostin's form/post-translational modifications depending on diet and WAT depot.

6.
Cells ; 8(11)2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671858

RESUMEN

Glycogen synthase kinase 3 (GSK3) slows myogenic differentiation and myoblast fusion partly by inhibiting the Wnt/ß-catenin signaling pathway. Lithium, a common medication for bipolar disorder, inhibits GSK3 via Mg+ competition and increased Ser21 (GSK3α) or Ser9 (GSK3ß) phosphorylation, leading to enhanced myoblast fusion and myogenic differentiation. However, previous studies demonstrating the effect of lithium on GSK3 have used concentrations up to 10 mM, which greatly exceeds concentrations measured in the serum of patients being treated for bipolar disorder (0.5-1.2 mM). Here, we determined whether a low-therapeutic (0.5 mM) dose of lithium could promote myoblast fusion and myogenic differentiation in C2C12 cells. C2C12 myotubes differentiated for three days in media containing 0.5 mM lithium chloride (LiCl) had significantly higher GSK3ß (ser9) and GSK3α (ser21) phosphorylation compared with control myotubes differentiated in the same media without LiCl (+2-2.5 fold, p < 0.05), a result associated with an increase in total ß-catenin. To further demonstrate that 0.5 mM LiCl inhibited GSK3 activity, we also developed a novel GSK3-specific activity assay. Using this enzyme-linked spectrophotometric assay, we showed that 0.5 mM LiCl-treated myotubes had significantly reduced GSK3 activity (-86%, p < 0.001). Correspondingly, 0.5 mM LiCl treated myotubes had a higher myoblast fusion index compared with control (p < 0.001) and significantly higher levels of markers of myogenesis (myogenin, +3-fold, p < 0.001) and myogenic differentiation (myosin heavy chain, +10-fold, p < 0.001). These results indicate that a low-therapeutic dose of LiCl is sufficient to promote myoblast fusion and myogenic differentiation in muscle cells, which has implications for the treatment of several myopathic conditions.


Asunto(s)
Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Cloruro de Litio/farmacología , Desarrollo de Músculos/efectos de los fármacos , Mioblastos/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Fusión Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Cloruro de Litio/administración & dosificación , Ratones , Mioblastos/citología , Mioblastos/fisiología , Vía de Señalización Wnt/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...