Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 12(7)2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35883472

RESUMEN

BACKGROUND: Tamoxifen-adapted MCF-7-Tam cells represent an in-vitro model for acquired tamoxifen resistance, which is still a problem in clinics. We here investigated the correlation of microRNA-, mRNA- and eukaryotic initiation factors (eIFs) expression in this model. METHODS: MicroRNA- and gene expression were analyzed by nCounter and qRT-PCR technology; eIFs by Western blotting. Protein translation mode was determined using a reporter gene assay. Cells were transfected with a miR-1972-mimic. RESULTS: miR-181b-5p,-3p and miR-455-5p were up-, miR-375, and miR-1972 down-regulated and are significant in survival analysis. About 5% of the predicted target genes were significantly altered. Pathway enrichment analysis suggested a contribution of the FoxO1 pathway. The ratio of polio-IRES driven to cap-dependent protein translation shifted towards cap-dependent initiation. Protein expression of eIF2A, -4G, -4H and -6 decreased, whereas eIF3H was higher in MCF-7-Tam. Significant correlations between tamoxifen-regulated miRNAs and eIFs were found in representative breast cancer cell lines. Transfection with a miR-1972-mimic reverses tamoxifen-induced expression for a subset of genes and increased proliferation in MCF-7, but reduced proliferation in MCF-7-Tam, especially in the presence of 4OH-tamoxifen. Migration was inhibited in MCF-7-Tam cells. Translation mode remained unaffected. CONCLUSIONS: miR-1972 contributes to the orchestration of gene-expression and physiological consequences of tamoxifen adaption.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Resistencia a Antineoplásicos , Femenino , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , MicroARNs/metabolismo , ARN Mensajero/genética , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
2.
Cancers (Basel) ; 13(6)2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799492

RESUMEN

Translation initiation comprises complex interactions of eukaryotic initiation factor (eIF) subunits and the structural elements of the mRNAs. Translation initiation is a key process for building the cell's proteome. It not only determines the total amount of protein synthesized but also controls the translation efficiency for individual transcripts, which is important for cancer or ageing. Thus, understanding protein interactions during translation initiation is one key that contributes to understanding how the eIF subunit composition influences translation or other pathways not yet attributed to eIFs. We applied the BioID technique to two rapidly dividing cell lines (the immortalized embryonic cell line HEK-293T and the colon carcinoma cell line HCT-166) in order to identify interacting proteins of eIF3A, a core subunit of the eukaryotic initiation factor 3 complex. We identified a total of 84 interacting proteins, with very few proteins being specific to one cell line. When protein biosynthesis was blocked by thapsigargin-induced endoplasmic reticulum (ER) stress, the interacting proteins were considerably smaller in number. In terms of gene ontology, although eIF3A interactors are mainly part of the translation machinery, protein folding and RNA binding were also found. Cells suffering from ER-stress show a few remaining interactors which are mainly ribosomal proteins or involved in RNA-binding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...