Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 12(549)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581132

RESUMEN

Monoclonal antibodies that block the programmed cell death 1 (PD-1) checkpoint have revolutionized cancer immunotherapy. However, many major tumor types remain unresponsive to anti-PD-1 therapy, and even among responsive tumor types, most of the patients do not develop durable antitumor immunity. It has been shown that bispecific antibodies activate T cells by cross-linking the TCR/CD3 complex with a tumor-specific antigen (TSA). The class of TSAxCD3 bispecific antibodies have generated exciting results in early clinical trials. We have recently described another class of "costimulatory bispecifics" that cross-link a TSA to CD28 (TSAxCD28) and cooperate with TSAxCD3 bispecifics. Here, we demonstrate that these TSAxCD28 bispecifics (one specific for prostate cancer and the other for epithelial tumors) can also synergize with the broader anti-PD-1 approach and endow responsiveness-as well as long-term immune memory-against tumors that otherwise do not respond to anti-PD-1 alone. Unlike CD28 superagonists, which broadly activate T cells and induce cytokine storm, TSAxCD28 bispecifics display little or no toxicity when used alone or in combination with a PD-1 blocker in genetically humanized immunocompetent mouse models or in primates and thus may provide a well-tolerated and "off the shelf" combination approach with PD-1 immunotherapy that can markedly enhance antitumor efficacy.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Anticuerpos Biespecíficos/uso terapéutico , Antígenos CD28 , Humanos , Inmunoterapia , Ratones , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1
2.
Sci Transl Med ; 12(525)2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915305

RESUMEN

T cell activation is initiated upon binding of the T cell receptor (TCR)/CD3 complex to peptide-major histocompatibility complexes ("signal 1"); activation is enhanced by engagement of a second "costimulatory" receptor, such as the CD28 receptor on T cells binding to its cognate ligand(s) on the target cell ("signal 2"). CD3-based bispecific antibodies act by replacing conventional signal 1, linking T cells to tumor cells by binding a tumor-specific antigen (TSA) with one arm of the bispecific and bridging to TCR/CD3 with the other. Although some of these so-called TSAxCD3 bispecifics have demonstrated promising antitumor efficacy in patients with cancer, their activity remains to be optimized. Here, we introduce a class of bispecific antibodies that mimic signal 2 by bridging TSA to the costimulatory CD28 receptor on T cells. We term these TSAxCD28 bispecifics and describe two such bispecific antibodies: one specific for ovarian and the other for prostate cancer antigens. Unlike CD28 superagonists, which broadly activate T cells and resulted in profound toxicity in early clinical trials, these TSAxCD28 bispecifics show limited activity and no toxicity when used alone in genetically humanized immunocompetent mouse models or in primates. However, when combined with TSAxCD3 bispecifics, they enhance the artificial synapse between a T cell and its target cell, potentiate T cell activation, and markedly improve antitumor activity of CD3 bispecifics in a variety of xenogeneic and syngeneic tumor models. Combining this class of CD28-costimulatory bispecific antibodies with the emerging class of TSAxCD3 bispecifics may provide well-tolerated, off-the-shelf antibody therapies with robust antitumor efficacy.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Antígenos CD28/inmunología , Complejo CD3/inmunología , Neoplasias/inmunología , Animales , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Proliferación Celular , Citocinas/metabolismo , Citotoxicidad Inmunológica , Femenino , Células HEK293 , Humanos , Sinapsis Inmunológicas/metabolismo , Activación de Linfocitos/inmunología , Macaca fascicularis , Ratones , Neoplasias/patología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA