Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 122(35): 8330-8342, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30109934

RESUMEN

Electrostatic interactions are essential for controlling the protein structure and function. Whereas so far experimental and theoretical efforts focused on the effect of local electrostatics, this work aims at elucidating the long-range modulation of electric fields in proteins upon binding to charged surfaces. The study is based on cytochrome c (Cytc) variants carrying nitrile reporters for the vibrational Stark effect that are incorporated into the protein via genetic engineering and chemical modification. The Cytc variants were thoroughly characterized with respect to possible structural perturbations due to labeling. For the proteins in solution, the relative hydrogen bond occupancy and the calculated electric fields, both obtained from molecular dynamics (MD) simulations, and the experimental nitrile stretching frequencies were used to develop a relationship for separating hydrogen-bonding and non-hydrogen-bonding electric field effects. This relationship provides an excellent description for the stable Cytc variants in solution. For the proteins bound to Au electrodes coated with charged self-assembled monolayers (SAMs), the underlying MD simulations can only account for the electric field changes Δ Eads due to the formation of the electrostatic SAM-Cytc complexes but not for the additional contribution, Δ Eint, representing the consequences of the potential drops over the electrode/SAM/protein interfaces. Both Δ Eads and Δ Eint, determined at distances between 20 and 30 Å with respect to the SAM surface, are comparable in magnitude to the non-hydrogen-bonding electric field in the unbound protein. This long-range modulation of the internal electric field may be of functional relevance for proteins in complexes with partner proteins (Δ Eads) and attached to membranes (Δ Eads + Δ Eint).


Asunto(s)
Citocromos c/química , Campos Electromagnéticos , Animales , Citocromos c/genética , Técnicas Electroquímicas , Electrodos , Oro/química , Caballos , Enlace de Hidrógeno , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/genética , Simulación de Dinámica Molecular , Mutación , Nitrilos/química , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...