Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732406

RESUMEN

The enhancement of the plant seed yield and quality represents the basis of the successful productivity of the deriving crop. The effect of single and combined foliar treatments of lettuce plants with sodium selenate and garlic bulb extract on seed yield and quality and on mature plant biochemical characteristics was investigated using four lettuce cultivars (Bouquet, Picnic, Moskovsky parnikovy and Cavalier). The seed production of plants treated with Se increased by 20-41%, compared to the untreated control plants, while the augmentation was as much as 10-23% and 17-27% under garlic extract and the joint application of Se and garlic, respectively. Garlic extract stimulated the accumulation of Se in lettuce seeds, which rose by 1.21-1.29 times compared to the Se-treated plants. The proline levels in lettuce seeds exceeded the corresponding values recorded in the control ones by 1.32-1.64 times in the case of the Se supply, 1.10-1.47 times upon garlic extract application and 1.09-1.31 times under the combined Se/garlic treatment. All the treatments given to lettuce plants increased the leaf weight by 1.10-1.30 times, compared to the untreated control. The seed Se levels positively correlated with the leaf weight (r = 0.621; p < 0.005), chlorophyll (r = 0.672, p < 0.002) and total antioxidant activity (AOA; r = 0.730, p < 0.001) of plants grown from these seeds. Positive correlations were also recorded between the seed proline content and lettuce plant leaf weight, chlorophyll and AOA (r = 0.868, 0.811 and 0.815, respectively, at p < 0.001). Lettuce yield was positively correlated with the leaf AOA, chlorophyll and ascorbic acid content (r = 0.942, 0.921 and 0.665, respectively, at p < 0.001). The results indicate high prospects of Na2SeO4 and garlic extract application to seed-addressed lettuce plants, to improve seed productivity and quality, as well as lettuce yield and quality.

2.
Front Nutr ; 10: 1264999, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094920

RESUMEN

Introduction: The need for healthy foods has become a major concern in our modern world, as the global population continues to grow and environmental challenges intensify. In response to these challenges, researchers have started to explore a range of sustainable solutions, including organic farming practices, precision agriculture, and the development and testing of innovative biofertilizers. Consistent with these ideas come the aim of this study, which sets out to give new insights into the cultivation of two sweet pepper cultivars with economic and nutritional importance in Romania. Methods: Two sweet pepper cultivars (Blancina and Brillant), chemically (Nutrifine®), organically (Orgevit®) and biologically (Micoseed®) fertilized were cultivated over the course of two years (2019 and 2020), between April and October, in high-tunnel, by following a split-plot design with three replications. Production parameters (number of fruits, fruit weight, yield), proximate composition (water content, dry matter, total soluble solids, acidity, ash), the content of phytonutrients (polyphenols, lycopene, ß-carotene, antioxidant activity), phytochemical composition (phenolic compounds) and minerals (macro- and micro-elements) were analyzed in order to determine the impact of fertilization on the quality of sweet peppers. Results: The results showed that the biological and organic fertilizations had a significant positive impact on most of the parameters analyzed, starting with yield and continuing with acidity, phytonutrient content (total phenolic content, lycopene, ß-carotene), antioxidant activity and phytochemical composition (chlorogenic acid, p-coumaric acid, quercetin and isoquercetin). Only in the case of mineral content, the chemical treatment gave better results compared with the organic and biological fertilizers. Conclusion: Overall, this study provides valuable information on the potential of organic and biological fertilizers to enhance the nutritional value of sweet peppers from Blancina F1 and Brillant F1 cultivars, paving the way for subsequent research aimed at achieving superior quality and increased yields.

3.
Plants (Basel) ; 12(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37960110

RESUMEN

Environmental pollution with heavy metals has become a problem of major interest due to the harmful effects of metal ions that constantly evolve and generate serious threats to both the environment and human health through the food chain. Recognizing the imperative need for toxicological assessments, this study revolves around elucidating the effects of Pb(II) and Cu(II) ions on three plant species; namely, Medicago sativa L., Triticum aestivum L., and Zea mays L. These particular species were selected due to their suitability for controlled laboratory cultivation, their potential resistance to heavy metal exposure, and their potential contributions to phytoremediation strategies. The comprehensive phytotoxicity assessments conducted covered a spectrum of critical parameters, encompassing germination inhibition, seedling development, and broader considerations regarding ecosystem health. The key metrics under scrutiny included the germination rate, the relative growth of root and stem lengths, the growth inhibition index, and the tolerance index. These accurately designed experiments involved subjecting the seeds of these plants to an array of concentrations of PbCl2 and CuCl2 solutions, enabling an exhaustive evaluation of the phytotoxic potential of these metal ions and their intricate repercussions on these plant species. Overall, this study provides valuable insights into the diverse and dynamic responses of different plant species to Pb(II) and Cu(II) metal ions, shedding light on their adaptability and resilience in metal-contaminated environments. These findings have important implications for understanding plant-metal interactions and devising phytoremediation strategies in contaminated ecosystems.

4.
Plants (Basel) ; 12(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37447092

RESUMEN

Natural reserves play a fundamental role in maintaining flora and fauna biodiversity, but the biochemical characteristics of such ecosystems have been studied in an extremely fragmentary way. For the first time, mineral composition and antioxidant status of three systematic groups of organisms, lichens (Diplischistes ocellatus), mushrooms (Calvatia candida and Battarrea phalloides) and wormwood (Artemisia lerchiana) have been described at the territory of Bogdinsko-Baskunchak Nature Reserve (Astrakhan region, Russia), characterized by high salinity and solar radiation, and water deficiency. Through ICP-MS, it was determined that scale lichen D. ocellatus accumulated up to 10-15% Ca, 0.5% Fe, 15 mg kg-1 d.w. iodine (I), 54.5 mg kg-1 Cr. Battarrea phalloides demonstrated anomalously high concentrations of B, Cu, Fe, Mn Se, Zn, Sr and low Na levels, contrary to Calvatia candida mushrooms accumulating up to 10,850 mg kg-1 Na and only 3 mg kg-1 Sr. The peculiarity of A. lerchiana plants was the high accumulation of B (22.23 mg kg-1 d.w.), Mn (57.48 mg kg-1 d.w.), and antioxidants (total antioxidant activity: 68.6 mg GAE g-1 d.w.; polyphenols: 21.0 mg GAE g-1 d.w.; and proline: 5.45 mg g-1 d.w.). Diploschistes ocellatus and Calvatia candida demonstrated the lowest antioxidant status: 3.6-3.8 mg GAE g-1 d.w. total antioxidant activity, 1.73-2.10 mg GAE g-1 d.w. polyphenols and 2.0-5.3 mg g-1 d.w. proline. Overall, according to the elemental analysis of lichen from Baskunchak Nature Reserve compared to the Southern Crimean seashore, the vicinity of Baskunchak Salty Lake elicited increased environmental levels of Cr, Si, Li, Fe, Co, Ni and Ca.

5.
Front Plant Sci ; 14: 1118383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909434

RESUMEN

Tomato is an essential annual crop providing human food worldwide. It is estimated that by the year 2050 more than 50% of the arable land will become saline and, in this respect, in recent years, researchers have focused their attention on studying how tomato plants behave under various saline conditions. Plenty of research papers are available regarding the effects of salinity on tomato plant growth and development, that provide information on the behavior of different cultivars under various salt concentrations, or experimental protocols analyzing various parameters. This review gives a synthetic insight of the recent scientific advances relevant into the effects of salinity on the morphological, physiological, biochemical, yield, fruit quality parameters, and on gene expression of tomato plants. Notably, the works that assessed the salinity effects on tomatoes were firstly identified in Scopus, PubMed, and Web of Science databases, followed by their sifter according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline and with an emphasis on their results. The assessment of the selected studies pointed out that salinity is one of the factors significantly affecting tomato growth in all stages of plant development. Therefore, more research to find solutions to increase the tolerance of tomato plants to salinity stress is needed. Furthermore, the findings reported in this review are helpful to select, and apply appropriate cropping practices to sustain tomato market demand in a scenario of increasing salinity in arable lands due to soil water deficit, use of low-quality water in farming and intensive agronomic practices.

6.
Molecules ; 28(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36770780

RESUMEN

With incidence of antimicrobial resistance rising globally, there is a continuous need for development of new antimicrobial molecules. Phenolic compounds having a versatile scaffold that allows for a broad range of chemical additions; they also exhibit potent antimicrobial activities which can be enhanced significantly through functionalization. Synthetic routes such as esterification, phosphorylation, hydroxylation or enzymatic conjugation may increase the antimicrobial activity of compounds and reduce minimal concentrations needed. With potent action mechanisms interfering with bacterial cell wall synthesis, DNA replication or enzyme production, phenolics can target multiple sites in bacteria, leading to a much higher sensitivity of cells towards these natural compounds. The current review summarizes some of the most important knowledge on functionalization of natural phenolic compounds and the effects on their antimicrobial activity.


Asunto(s)
Antiinfecciosos , Antiinfecciosos/farmacología , Fenoles/farmacología , Extractos Vegetales , Antioxidantes , Antibacterianos/farmacología
7.
Foods ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36613422

RESUMEN

The use of cold plasma in the treatment of seeds before sowing presents a promising technique for sustainable agriculture. The objective of this study is to evaluate the effect of cold plasma treatment on the morphology of wheat seeds (Triticum aestivum L. 'Dacic' and 'Otilia'), their germination, biochemical composition, and the nutritional quality of wheat grass. Wheat seeds were morphologically and elementally characterized by atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray computer tomography (CT), and particle-induced X-ray emission (PIXE). Helium was used as a working gas for plasma generation and the analysis of the species produced showed the presence of NOγ, OH, N2 and N2+ and O. Evaluation of germination and plant growth for 10 days (wheat grass stage) highlighted a specific trend for each cultivar. The biochemical analysis of wheat grass highlighted an increase in the chlorophyll content in the plasma-treated variants, an increase in the flavonoid and polyphenol content in 'Dacic'-treated variant, while the soluble protein content, antioxidant activity, and color were not affected. The analysis of the nutritional quality of wheat grass by the FT-NIR analytical technique highlighted an increase in the ash content in the plasma-treated wheat cultivars, while the humidity, proteins, neutral detergent fiber (NDF), acid detergent fiber (ADF), and energy values were not affected.

8.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203619

RESUMEN

The continuous development of drinking water networks is leading to the production of increasing amounts of waste water and sewage sludge. Secondary-treated sewage sludge is called biosolids and can be used as fertilizers in agriculture due to its rich nutrient content. The aim of this study was to evaluate the effects of biosolids mixed with an eroded soil on the morphology, physiology and synthesis of bioactive compounds in basil. The study was performed in pots under laboratory-controlled conditions. In total, four substrates were tested: S1 biosolids 100%, S2 biosolids 15% + eroded soil 85%, S3 eroded soil 100% and S4 control (commercial growing substrate). At the morphological level, a significant increase in plant height, number of branches, fresh biomass and dry biomass was found in the S2 variant. At the physiological level, photosynthesis and chlorophyll content did not vary significantly, but the quantum yield of PSII (ΦPSII) was significantly higher at S1 and S2. The oxidative status evaluated by determining the activity of SOD, POD and CAT enzymes was better in S2 and S3 compared to S3. Regarding the synthesis of bioactive compounds (rosmarinic acid, caffeic acid and gallic acid), it was stimulated in S1 and S2. In conclusion, biosolids application stimulated the stress response mechanisms in basil plants by increasing the quantum yield chlorophyll fluorescence and catalase activity, alleviating the negative effects of eroded soil.


Asunto(s)
Ocimum basilicum , Biosólidos , Aguas del Alcantarillado , Clorofila , Fenoles , Suelo
9.
Toxics ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36136464

RESUMEN

Accelerating heavy metal pollution is a hot issue due to a continuous growth in consumerism and increased activities in various global industries. Soil contamination with heavy metals has resulted in their incorporation into the human food web via plant components. Accumulation and amplification of heavy metals in human tissues through the consumption of medicinal plants can have hazardous health outcomes. Therefore, in this critical review we aim to bring together published information on this subject, with a special highlight on the knowledge gaps related to heavy metal stress in medicinal plants, their responses, and human health related risks. In this respect, this review outlines the key contamination sources of heavy metals in plants, as well as the absorption, mobilization and translocation of metal ions in plant compartments, while considering their respective mechanisms of detoxification. In addition, this literature review attempts to highlight how stress and defensive strategies operate in plants, pointing out the main stressors, either biotic or abiotic (e.g., heavy metals), and the role of reactive oxygen species (ROS) in stress answers. Finally, in our research, we further aim to capture the risks caused by heavy metals in medicinal plants to human health through the assessment of both a hazard quotient (HQ) and hazard index (HI).

10.
Plants (Basel) ; 11(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35270105

RESUMEN

Periodic removal of sediment from aquaculture ponds is practiced to maintain their productivity and animal welfare. The recovery of sediment as a plant fertilizer could alleviate the costs of sediment removal. The objective of this study was to test the effects of a dried sediment, extracted from an aquaculture pond used for common carp cultivation, on the growth and physiology of potted wheat grass and the quality of the juice obtained from wheat grass. The results showed that sediment application did not produce significant morphological changes, although the values for plant height (16.94-19.22 cm), leaf area (19.67-139.21 mm2), and biomass (3.39-4.26 g/plant) were higher in sediment-grown plants. However, at a physiological level, the effect was negative, decreasing photosynthesis (0.82-1.66 µmol CO2 m2s-1), fluorescence ΦPSII (0.737-0.782), and chlorophyll content (1.40-1.83 CCI). The juice yield was reduced in the sediment treatments (46-58 g/100 g), while the quality was improved by increasing the content of phenols (2.55-3.39 µg/mL gallic acid equivalent), flavonoids (1.41-1.85 µg/mL quercetin equivalent), and antioxidant activity (47.99-62.7% inhibition of; 2,2-diphenyl-1-picrylhydrazyl). The positive results obtained in this study can be attributed to the moderate nutrient content of the sediment and a negligible concentration of heavy metals.

11.
Molecules ; 26(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34641299

RESUMEN

Increasing interest on sustainable agriculture has led to the development of new materials which can be used as seed coating agents. In this study, a new material was developed based on gelatin film reinforced with cellulose nanocrystals (CNC) which was further used as nanocomposite matrix for Trichoderma harzianum KUEN 1585 spores. The nanocomposite films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), showing the formation of new hydrogen bonds between the components with a good compatibility between them. Measurements of water contact angles and tests of water vapor sorption and swelling degree revealed an improvement in the water vapor absorption properties of the films as a result of their reinforcement with CNC. Furthermore, by adding the Trichoderma harzianum KUEN 1585 spp. in the seed coating material, the germination percentage, speed of germination and roots length of the corn seeds improved. The polymeric coating did not inhibit the growth of T. harzianum KUEN 1585, with this material being a good candidate in modern agriculture.


Asunto(s)
Celulosa/química , Gelatina/química , Hypocreales/fisiología , Semillas/fisiología , Zea mays/fisiología , Germinación , Enlace de Hidrógeno , Microscopía Electrónica de Rastreo , Nanocompuestos/química , Nanocompuestos/microbiología , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
12.
Animals (Basel) ; 11(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34573554

RESUMEN

Wheat grass juice (WGJ) is an extract of young wheat plantlets (Triticum aetivum L.) used worldwide for its health related properties. In this study, the following feeds containing WGJ were tested on common carp (Cyprinus carpio L.): Control (C), WGJ1% (V1), WGJ2% (V2) and WGJ4% (V3) w/w. Fish with an average initial weight of 102 g/individual were grown in a recirculating aquaculture system. The results showed that WGJ had stimulatory effects on growth performance. Accordingly, final body weight increased by 11% at V1, 39% at V2 and 23% at V3, while other indices (feed conversion ratio, specific growth rate, relative growth rate, protein efficiency ratio, and condition factor) were unaffected. Body composition analyses revealed a significant decrease in fat content at V2 and a significant increase in collagen and ash at the same variant, while the protein content was unmodified. Regarding the blood profile, significant increases in the content of albumin, globulin, total protein, and calcium were recorded in the variants with WGJ. The positive results of WGJ on carp can be attributed to its biochemical composition, which is rich in chlorophyll (4.71 mg mL-1), total phenols (164 µg mL-1 gallic acid equivalents), and high antioxidant activity (67% inhibition of DPPH 2,2-diphenyl-1-picrylhydrazyl). The results suggest WGJ can be used as a promising feed additive for common carp.

13.
Sci Rep ; 10(1): 20920, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262393

RESUMEN

Plasma activated water (PAW) can represent an alternative to chemical fertilizers in agriculture. The effects of PAW treatment applied in two concentrations (1.5 or 3.0 mg L-1 NO3-) on some morphological, physiological, biochemical parameters and yield of Lactuca sativa L. grown in two different pot volumes (400 or 3200 cm3) were investigated in this study. The results showed that both PAW concentrations did not influence the germination, once the process was initiated. Positive effects of the treatments were registered on the length of radicle and hypocotyls of lettuce at a concentration of 1.5 mg L-1 NO3- (PAW I), the chlorophyll content was significantly increased at a concentration of 3.0 mg L-1 NO3- (PAW II) and bigger pot volume, also the foliar weight and area. No significant differences between the treated and untreated plants were recorded for the root weight, leaf length and width. The dry weight was significantly higher for the lettuce treated with PAW I and II grown in big volume pots at 57 days after transplanting (DAT) and small volume pots at 64 DAT. The nitrites content of the lettuce grown in big pots was lower than of the lettuce grown in small pots, regardless of the PAW treatment. Contrary, the nitrates content was higher in the lettuce grown in big pots (up to 36.4 mg KNO3/g DW), compared to small pots (under 0.3 mg KNO3/g DW).


Asunto(s)
Lactuca/crecimiento & desarrollo , Desarrollo de la Planta , Gases em Plasma/química , Agua/farmacología , Biomasa , Clorofila/metabolismo , Germinación/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Lactuca/efectos de los fármacos , Nitratos/metabolismo , Fotosíntesis/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
14.
Plants (Basel) ; 9(8)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824850

RESUMEN

Tomato is considered one of the most important crops worldwide from nutritional and economic standpoints, and, in this respect, sustainable production should be a prime objective, particularly in terms of fertilization and irrigation management. The aim of this study is to compare the effects of two fertilization types (chemical or organic) and two irrigation regimes (67% or 100% of evapotranspiration replenishment) on biometrical, biochemical, and yield parameters of three indeterminate cultivars of tomato grown in a greenhouse. The results showed that the effect of organic fertilization was better compared to chemical fertilization for lycopene accumulation and antioxidant activity, as well as for the lower concentrations of any of the macroelements in the tomato fruits; therefore, organic fertilization can be used as an alternative to chemical fertilization in sustainable horticulture. In each cultivar under the same fertilization type, the effect of irrigation was significant on yield and the number of fruits, but the 100% evapotranspiration restoration did not enhance the fruit concentration of all the macroelements and microelements compared to 67% irrigation regime. Higher concentrations of macro- and microelements in the chemically fertilized fruits compared to the organic ones, regardless of the cultivar and the irrigation regime, suggest that the inorganic substances are more easily absorbed by plants under a protected environment. Organic fertilization positively affected the lycopene and antioxidant activities of tomato fruits, thus proving to be a valuable alternative to chemical fertilization in sustainable agriculture, although the product premium quality also depends on the cultivar used.

15.
Plants (Basel) ; 9(3)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168814

RESUMEN

In recent years, rhubarb is being increasingly cultivated, as it provides early yields when the vegetables supply to market is deficient and shows high levels of both polyphenols content and antioxidant capacity in edible parts. In 2017, we investigated crops of the rhubarb cultivar Victoria to the fifth year of production. Comparisons were performed between three root phase fertilizations-chemical (NPK 16-16-16®), organic (Orgevit®), and biological (Micoseeds MB®)-plus an unfertilized control. The determinations of polyphenols, the antioxidant capacity, and the yield indicators from the stalks (petioles) of rhubarb were made at each out of the 10 harvests carried out. The highest yield (59.16 t·ha-1) was recorded under the chemical fertilization. The total polyphenols content and antioxidant capacity varied widely from 533.86 mg GAE·g-1 d.w. and 136.86 mmol Trolox·g-1 d.w., respectively in the unfertilized control at the last harvest, up to 3966.56 mg GAE·g-1 d.w. and 1953.97 mmol Trolox·g-1 d.w. respectively under the organic fertilization at the four harvest. From the results of our investigation, it can be inferred that the chemical fertilization was the most effective in terms of yield, whereas the sustainable nutritional management based on organic fertilizer supply led to higher antioxidant compounds and activity.

16.
Microorganisms ; 7(12)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888271

RESUMEN

The practice of organic agriculture represents an essential requirement for conserving natural resources and for providing the food necessary for a growing population, on a sustainable basis. Tomatoes are considered to be one of the most important crops worldwide. In this context, the organic production of tomatoes should be taken into more consideration. The use of microorganisms-based commercial products is an alternative to chemical fertilizers. Anyway, the results of their use are still variable because of various factors. The aim of this study was to test the effect of inoculation with AMF, PGPR and fungi-based products (Rizotech plus®) on the morphological (length of the plants), biochemical (lycopen, polyphenols, antioxidant activity), and number of fruits and yields of four tomato cultivars (Siriana F1, HTP F1, Minaret F1, Inima de Bou) in two different water regimes used for irrigation (200 m3 or 300 m3 of water/hectare) under a protected area. The results showed that the efficiency of Rizotech plus® application is dependent on the cultivar and the amount of water used. Also, it was clearly demonstrated that the microorganism inoculation significantly increased the yield of Minaret F1, Siriana F1 and HTP F1 cultivars as compared to the uninoculated plants, regardless of the water amount used in the experiment. Moreover, it was observed that for the irrigation of all four cultivars, inoculated with Rizotech plus®, a lower amount of water (200 m3·ha-1) can be used to get the same length of plants, number of fruits and yield as in the case of a higher amount of water (300 m3·ha-1). In the case of lycopene, polyphenols and antioxidant activity, the results varied with the cultivar and the water amount used. This study gives new information about the functionality and performance of the microorganisms from Rizotech plus® product when applied to different tomato cultivars grown in a tunnel, in the condition of two different water regimes, contributing to a better characterization of it and maybe to a more efficient use in agriculture to achieve optimum results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...