Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(4)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39051837

RESUMEN

Interoperability in computational chemistry is elusive, impeded by the independent development of software packages and idiosyncratic nature of their output files. The cclib library was introduced in 2006 as an attempt to improve this situation by providing a consistent interface to the results of various quantum chemistry programs. The shared API across programs enabled by cclib has allowed users to focus on results as opposed to output and to combine data from multiple programs or develop generic downstream tools. Initial development, however, did not anticipate the rapid progress of computational capabilities, novel methods, and new programs; nor did it foresee the growing need for customizability. Here, we recount this history and present cclib 2, focused on extensibility and modularity. We also introduce recent design pivots-the formalization of cclib's intermediate data representation as a tree-based structure, a new combinator-based parser organization, and parsed chemical properties as extensible objects.

2.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673722

RESUMEN

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme that converts vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents supplied by its redox partner through thiol-disulphide exchange reactions. The functionally related molecular complexes assembled during this process have never been described, except for a proposed de novo model of a 'precursor' complex of hVKORC1 associated with protein disulphide isomerase (PDI). Using numerical approaches (in silico modelling and molecular dynamics simulation), we generated alternative 3D models for each molecular complex bonded either covalently or non-covalently. These models differ in the orientation of the PDI relative to hVKORC1 and in the cysteine residue involved in forming protein-protein disulphide bonds. Based on a comparative analysis of these models' shape, folding, and conformational dynamics, the most probable putative complexes, mimicking the 'precursor', 'intermediate', and 'successor' states, were suggested. In addition, we propose using these complexes to develop the 'allo-network drugs' necessary for treating blood diseases.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Disulfuro Isomerasas , Vitamina K Epóxido Reductasas , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/química , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo , Vitamina K Epóxido Reductasas/genética , Humanos , Disulfuros/química , Disulfuros/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Modelos Moleculares , Conformación Proteica , Oxidación-Reducción , Unión Proteica
3.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409257

RESUMEN

Human vitamin K epoxide reductase (hVKORC1) enzymatic activity requires an initial activation by a specific redox protein, a less studied step in the hVKORC1 vital cycle. Significant steric conditions must be met by enzymes, being that to adapt their configurations is mandatory for hVKORC1 activation. We studied, by molecular dynamics (MD) simulations, the folding and conformational plasticity of hVKORC1 in its inactive (fully oxidised) state using available structures, crystallographic and from de novo modelling. According to the obtained results, hVKORC1 is a modular protein composed of the stable transmembrane domain (TMD) and intrinsically disordered luminal (L) loop, possessing the great plasticity/adaptability required to perform various steps of the activation process. The docking (HADDOCK) of Protein Disulfide Isomerase (PDI) onto different hVKORC1 conformations clearly indicated that the most interpretable solutions were found on the target closed L-loop form, a prevalent conformation of hVKORC1's oxidised state. We also suggest that the cleaved L-loop is an appropriate entity to study hVKORC1 recognition/activation by its redox protein. Additionally, the application of hVKORC1 (membrane protein) in aqueous solution is likely to prove to be very useful in practice in either in silico studies or in vitro experiments.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Disulfuro Isomerasas , Humanos , Oxidación-Reducción , Proteína Disulfuro Isomerasas/metabolismo , Dominios Proteicos , Vitamina K/metabolismo , Vitamina K Epóxido Reductasas/química
4.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466919

RESUMEN

Redox (reduction-oxidation) reactions control many important biological processes in all organisms, both prokaryotes and eukaryotes. This reaction is usually accomplished by canonical disulphide-based pathways involving a donor enzyme that reduces the oxidised cysteine residues of a target protein, resulting in the cleavage of its disulphide bonds. Focusing on human vitamin K epoxide reductase (hVKORC1) as a target and on four redoxins (protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-related transmembrane protein 4 (Tmx4)) as the most probable reducers of VKORC1, a comparative in-silico analysis that concentrates on the similarity and divergence of redoxins in their sequence, secondary and tertiary structure, dynamics, intraprotein interactions and composition of the surface exposed to the target is provided. Similarly, hVKORC1 is analysed in its native state, where two pairs of cysteine residues are covalently linked, forming two disulphide bridges, as a target for Trx-fold proteins. Such analysis is used to derive the putative recognition/binding sites on each isolated protein, and PDI is suggested as the most probable hVKORC1 partner. By probing the alternative orientation of PDI with respect to hVKORC1, the functionally related noncovalent complex formed by hVKORC1 and PDI was found, which is proposed to be a first precursor to probe thiol-disulphide exchange reactions between PDI and hVKORC1.


Asunto(s)
Dominios Proteicos , Pliegue de Proteína , Tiorredoxinas/química , Vitamina K Epóxido Reductasas/química , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Homología de Secuencia de Aminoácido , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo
5.
Sci Rep ; 10(1): 5401, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32214210

RESUMEN

Receptor tyrosine kinases (RTKs) are key regulators of normal cellular processes and have a critical role in the development and progression of many diseases. RTK ligand-induced stimulation leads to activation of the cytoplasmic kinase domain that controls the intracellular signalling. Although the kinase domain of RTKs has been extensively studied using X-ray analysis, the kinase insert domain (KID) and the C-terminal are partially or fully missing in all reported structures. We communicate the first structural model of the full-length RTK KIT cytoplasmic domain, a crucial target for cancer therapy. This model was achieved by integration of ab initio KID and C-terminal probe models into an X-ray structure, and by their further exploration through molecular dynamics (MD) simulation. An extended (2-µs) MD simulation of the proper model provided insight into the structure and conformational dynamics of the full-length cytoplasmic domain of KIT, which can be exploited in the description of the KIT transduction processes.


Asunto(s)
Dominio Catalítico/fisiología , Citoplasma/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Humanos , Simulación de Dinámica Molecular , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...