Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Conserv Biol ; 36(1): e13834, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34476838

RESUMEN

From a conservation perspective, quantifying potential refugial capacity has been predominantly focused on climate refugia, which is critical for maintaining the persistence of species and ecosystems. However, protection from other stressors, such as human-induced changes in fire and hydrology, that cause habitat loss, degradation, and fragmentation is also necessary to ensure that conservation efforts focused on climate are not undermined by other threats. Thus, conceptual and methodological advances for quantifying potential refugia from multiple anthropogenic stressors are important to support conservation efforts. We devised a new conceptual approach, the domains of refugia, for assessing refugial capacity that identifies areas where exposure to multiple stressors is low. In our framework, patterns of environmental variability (e.g., increased frequency of warm summers), thresholds of resilience, and extent and intensity of stressors are used to identify areas of potential refugia from a suite of ongoing anthropogenic stressors (e.g., changes in fire regime). To demonstrate its utility, we applied the framework to a Southern California landscape. Sites with high refugial capacity (super-refugia sites) had on average 30% fewer extremely warm summers, 20% fewer fire events, 10% less exposure to altered river channels and riparian areas, and 50% fewer recreational trails than the surrounding landscape. Our results suggest that super-refugia sites (∼8200 km2 ) for some natural communities are underrepresented in the existing protected area network, a finding that can inform efforts to expand protected areas. Our case study highlights how considering exposure to multiple stressors can inform planning and practice to conserve biodiversity in a changing world.


Marco Conceptual a para Identificar Refugios de Múltiples Amenazas a Escala de Paisaje Resumen Desde la perspectiva de la conservación, la cuantificación de la capacidad potencial de refugio se ha enfocado principalmente en los refugios climáticos, los cuales son críticos para mantener la persistencia de las especies y los ecosistemas. Sin embargo, la protección ante otros factores estresantes, como los cambios inducidos por los humanos en los incendios y la hidrología, que causan la pérdida, degradación y fragmentación del hábitat, también son necesarios para asegurar que los esfuerzos de conservación enfocados en el clima no sean afectados por otras amenazas. Por lo tanto, los avances conceptuales y metodológicos para cuantificar los refugios potenciales ante múltiples factores estresantes causados por el humano son importantes para asegurar que los esfuerzos de conservación logren sus objetivos. Diseñamos una nueva estrategia conceptual, los dominios de los refugios, para evaluar la capacidad de refugio de un paisaje donde la exposición a múltiples factores estresantes es baja. En nuestro marco conceptual usamos los patrones de variabilidad ambiental (p. ej.: incremento en la frecuencia de veranos cálidos), los umbrales de resiliencia y la extensión e intensidad de los factores estresantes para identificar las áreas de refugios potenciales a partir de un conjunto de factores antropogénicos persistentes (p. ej.: cambios en el régimen de incendios). Para demostrar su utilidad, aplicamos el marco conceptual a un paisaje del sur de California. Los sitios con una alta capacidad de refugio (sitios de súper-refugios) tuvieron en promedio un 30% menos veranos extremadamente cálidos, 20% menos eventos de incendios y 50% menos senderos recreativos que el paisaje circundante. Nuestros resultados sugieren que los sitios de súper-refugios (∼ 8,200 km2 ) para algunas comunidades naturales están subrepresentados en la red existente de áreas protegidas, un resultado que puede orientar los esfuerzos por expandir las áreas protegidas. Nuestro estudio de caso resalta que considerar la exposición a múltiples amenazas puede guiar la planificación y la práctica de la conservación de la biodiversidad en un mundo cambiante.


Asunto(s)
Ecosistema , Refugio de Fauna , Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales/métodos , Humanos
2.
Sci Total Environ ; 751: 142271, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182014

RESUMEN

Regrowth after fire is critical to the persistence of chaparral shrub communities in southern California, which has been subject to frequent fire events in recent decades. Fires that recur at short intervals of 10 years or less have been considered an inhibitor of recovery and the major cause of 'community type-conversion' in chaparral, primarily based on studies of small extents and limited time periods. However, recent sub-regional investigations based on remote sensing suggest that short-interval fire (SIF) does not have ubiquitous impact on postfire chaparral recovery. A region-wide analysis including a greater spatial extent and time period is needed to better understand SIF impact on chaparral. This study evaluates patterns of postfire recovery across southern California, based on temporal trajectories of Normalized Difference Vegetation Index (NDVI) derived from June-solstice Landsat image series covering the period 1984-2018. High spatial resolution aerial images were used to calibrate Landsat NDVI trajectory-based estimates of change in fractional shrub cover (dFSC) for 294 stands. The objectives of this study were (1) to assess effects of time between fires and number of burns on recovery, using stand-aggregate samples (n = 294) and paired single- and multiple-burn sample plots (n = 528), and (2) to explain recovery variations among predominant single-burn locations based on shrub community type, climate, soils, and terrain. Stand-aggregate samples showed a significant but weak effect of SIF on recovery (p < 0.001; R2 = 0.003). Results from paired sample plots showed no significant effect of SIF on dFSC among twice-burned sites, although recovery was diminished due to SIF at sites that burned three times within 25 years. Multiple linear regression showed that annual precipitation and temperature, chaparral community type, and edaphic variables explain 28% of regional variation in recovery of once-burned sites. Many stands that exhibited poor recovery had burned only once and consist of xeric, desert-fringe chamise in soils of low clay content.


Asunto(s)
Ecosistema , Incendios , California , Clima , Suelo
3.
Ecosystems ; 20202020.
Artículo en Inglés | MEDLINE | ID: mdl-33293894

RESUMEN

Chaparral shrubs in southern California may be vulnerable to frequent fire and severe drought. Drought may diminish postfire recovery or worsen impact of short-interval fires. Field-based studies have not shown the extent and magnitude of drought effects on recovery, which may vary among chaparral types and climatic zones. We tracked regional patterns of shrub cover based on June-solstice Landsat Normalized Difference Vegetation Index series, compared between the periods 1984-1989 and 2014-2018. High spatial resolution ortho-imagery was used to map shrub cover in distributed sample plots, to empirically constrain the Landsat-based estimates of mature-stage lateral canopy recovery. We evaluated precipitation, climatic water deficit (CWD), and Palmer Drought Severity Index in summer and wet seasons preceding and following fire, as regional predictors of recovery in 982 locations between the Pacific Coast and inland deserts. Wet-season CWD was the strongest drought-metric predictor of recovery, contributing 34-43 % of explanatory power in multivariate regressions (R 2 =0.16-0.42). Limited recovery linked to drought was most prevalent in transmontane chamise chaparral; impacts were minor in montane areas, and in mixed and montane chaparral types. Elevation was correlated negatively to recovery of transmontane chamise; this may imply acute drought sensitivity in resprouts which predominate seedlings at higher elevations. Landsat Visible Atmospherically Resistant Index (sensitive to live-fuel moisture) was evaluated as a landscape-scale predictor of recovery and explained the greatest amount of variance in a multivariate regression (R 2 = 0.53). We find that drought severity was more closely related to recovery differences among twice-burned sites than was fire-return interval. Summarily, drought has a major role in long-term shrub cover reduction within xeric chaparral ecotones bounding the Mojave Desert and Colorado Desert, likely in tandem with other global change stressors.

4.
Remote Sens Lett ; 11(5): 426-435, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33149957

RESUMEN

Mapping plant growth forms is useful to classify and monitor chaparral shrubland community types in southern California. This study evaluates the utility of plant height information, derived from high spatial resolution aerial images and structure-from-motion photogrammetry, for the purpose of distinguishing tree, shrub and sub-shrub growth forms from herbs and bare ground. Canopy height models (CHMs) were derived for two chaparral sites on Santa Rosa Plateau which contain intermixed growth forms. A multi-criterion, knowledge-based thresholding approach was used to classify growth forms based on spectral data (Normalized Difference Vegetation Index, hue, intensity, and focal texture) alone, CHM data alone, and hybrid combinations of spectral and CHM data. Overall accuracies were 66.0-69.0% from spectral data, 72.0-75.5% from CHM data, and 80.5-82.5% from the hybrid data sets. This study highlights the utility in combining multi-spectral and canopy height data for characterizing Mediterranean-type plant communities and changes therein.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32076393

RESUMEN

Temporal trajectories of apparent vegetation abundance based on the multi-decadal Landsat image series provide valuable information on the postfire recovery of chaparral shrublands, which tend to mature within one decade. Signals of change in fractional shrub cover (FSC) extracted from time-sequential Normalized Difference Vegetation Index (NDVI) data can be systematically biased due to spatial variation in shrub type, soil substrate, or illumination differences associated with topography. We evaluate the effects of these variables in Landsat-derived metrics of FSC and postfire recovery, based upon three chaparral sites in southern California which contain shrub community ecotones, complex terrain, and soil variations. Detailed validations of prefire and postfire FSC are based on high spatial resolution ortho-imagery; cross-stratified random sampling is used for variable control. We find that differences in the composition and structure of shrubs (inferred from ortho-imagery) can substantially influence FSC-NDVI relations and impact recovery metrics. Differences in soil type have a moderate effect on the FSC-NDVI relation in one of the study sites, while no substantial effects were observed due to variation of terrain illumination among the study sites. Arithmetic difference recovery metrics - based on NDVI values that were not normalized with unburned control plots - correlate in a moderate but significant manner with a change in FSC (R 2 values range 0.47-0.59 at two sites). Similar regression coefficients resulted from using Landsat visible reflectance data alone. The lowest correlations to FSC resulted from Soil-Adjusted Vegetation Index (SAVI) and are attributed to the effects of the soil-adjustment factor in sparsely vegetated areas. The Normalized Burn Ratio and Normalized Burn Ratio 2 showed a moderate correlation to FSC. This study confirms the utility of Landsat NDVI data for postfire recovery evaluation and implies a need for stratified analysis of postfire recovery in some chaparral landscapes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...