Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Parasitol ; 47(9): 569-583, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28577881

RESUMEN

The genome of the cattle tick Rhipicephalus microplus, an ectoparasite with global distribution, is estimated to be 7.1Gbp in length and consists of approximately 70% repetitive DNA. We report the draft assembly of a tick genome that utilized a hybrid sequencing and assembly approach to capture the repetitive fractions of the genome. Our hybrid approach produced an assembly consisting of 2.0Gbp represented in 195,170 scaffolds with a N50 of 60,284bp. The Rmi v2.0 assembly is 51.46% repetitive with a large fraction of unclassified repeats, short interspersed elements, long interspersed elements and long terminal repeats. We identified 38,827 putative R. microplus gene loci, of which 24,758 were protein coding genes (≥100 amino acids). OrthoMCL comparative analysis against 11 selected species including insects and vertebrates identified 10,835 and 3,423 protein coding gene loci that are unique to R. microplus or common to both R. microplus and Ixodes scapularis ticks, respectively. We identified 191 microRNA loci, of which 168 have similarity to known miRNAs and 23 represent novel miRNA families. We identified the genomic loci of several highly divergent R. microplus esterases with sequence similarity to acetylcholinesterase. Additionally we report the finding of a novel cytochrome P450 CYP41 homolog that shows similar protein folding structures to known CYP41 proteins known to be involved in acaricide resistance.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Genoma/genética , Rhipicephalus/genética , Infestaciones por Garrapatas/veterinaria , Animales , Vectores Arácnidos/genética , Secuencia de Bases , Bovinos , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/genética , ADN/química , ADN/aislamiento & purificación , Elementos Transponibles de ADN , Evolución Molecular , Femenino , Biblioteca de Genes , Masculino , MicroARNs/química , MicroARNs/genética , Modelos Genéticos , Anotación de Secuencia Molecular , Control de Ácaros y Garrapatas/métodos , Infestaciones por Garrapatas/parasitología
2.
Plant J ; 75(5): 880-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23672264

RESUMEN

Genomics-based breeding of economically important crops such as banana, coffee, cotton, potato, tobacco and wheat is often hampered by genome size, polyploidy and high repeat content. We adapted sequence-based whole-genome profiling (WGP™) technology to obtain insight into the polyploidy of the model plant Nicotiana tabacum (tobacco). N. tabacum is assumed to originate from a hybridization event between ancestors of Nicotiana sylvestris and Nicotiana tomentosiformis approximately 200,000 years ago. This resulted in tobacco having a haploid genome size of 4500 million base pairs, approximately four times larger than the related tomato (Solanum lycopersicum) and potato (Solanum tuberosum) genomes. In this study, a physical map containing 9750 contigs of bacterial artificial chromosomes (BACs) was constructed. The mean contig size was 462 kbp, and the calculated genome coverage equaled the estimated tobacco genome size. We used a method for determination of the ancestral origin of the genome by annotation of WGP sequence tags. This assignment agreed with the ancestral annotation available from the tobacco genetic map, and may be used to investigate the evolution of homoeologous genome segments after polyploidization. The map generated is an essential scaffold for the tobacco genome. We propose the combination of WGP physical mapping technology and tag profiling of ancestral lines as a generally applicable method to elucidate the ancestral origin of genome segments of polyploid species. The physical mapping of genes and their origins will enable application of biotechnology to polyploid plants aimed at accelerating and increasing the precision of breeding for abiotic and biotic stress resistance.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta , Nicotiana/genética , Mapeo Físico de Cromosoma , Cruzamiento , Ligamiento Genético , Hibridación Genética , Anotación de Secuencia Molecular , Poliploidía
3.
Anim Reprod Sci ; 138(3-4): 228-32, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23537482

RESUMEN

The objective of this study was to evaluate the effectiveness of recombinant LHRH fusion protein, Ovalbumin-LHRH-7 (OL), using a single-dose vaccination protocol in combination with different adjuvants in suppressing reproductive functions in buck kids. For this purpose, either a mixture of free OL antigen and encapsulated OL antigen, or encapsulated OL antigen was used. Thirty-nine native buck kids at 12 weeks of age were divided into control (n=7) and treatment groups (n=8 bucks/group). The four treatment groups were formed according to the different vaccine formulations: Group CpG received 0.5mg free OL protein together with 1.0mg of encapsulated protein with CpG adjuvant. Group mFCA received 0.5mg free OL protein together with 1.0mg of encapsulated protein with modified Freund's complete adjuvant. Group IS received 1.5mg encapsulated OL protein with a mix of inulin and saponin adjuvants. Group ISmFCA received 1.5mg encapsulated OL protein with a mix of inulin, saponin and modified Freund's complete adjuvants. Scrotal circumference in CpG and mFCA groups were significantly smaller than that of Control, IS and ISmFCA groups (P<0.05). Numbers and percentage of bucks having spermatozoa in their ejaculate were significantly lower in CpG and mFCA groups (P<0.05). OL immunization completely suppressed sperm production, except one buck, in CpG and mFCA groups (P<0.05). These results imply that it is possible to use OL protein in a single injection protocol for the purpose of immunocastration. Further investigation with a larger number of animals should be carried out to determine the longevity of response to a single injection.


Asunto(s)
Adyuvantes Inmunológicos , Anticoncepción Inmunológica/métodos , Cabras , Hormona Liberadora de Gonadotropina/administración & dosificación , Ovalbúmina/administración & dosificación , Espermatogénesis/efectos de los fármacos , Vacunas Anticonceptivas/administración & dosificación , Animales , Anticoncepción Inmunológica/veterinaria , Cabras/crecimiento & desarrollo , Cabras/fisiología , Masculino , Tamaño de los Órganos/efectos de los fármacos , Proteínas Recombinantes de Fusión/administración & dosificación , Escroto/efectos de los fármacos , Escroto/crecimiento & desarrollo , Maduración Sexual/efectos de los fármacos , Espermatogénesis/fisiología , Vacunación
4.
BMC Genomics ; 13: 47, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22289472

RESUMEN

BACKGROUND: Sequencing projects using a clone-by-clone approach require the availability of a robust physical map. The SNaPshot technology, based on pair-wise comparisons of restriction fragments sizes, has been used recently to build the first physical map of a wheat chromosome and to complete the maize physical map. However, restriction fragments sizes shared randomly between two non-overlapping BACs often lead to chimerical contigs and mis-assembled BACs in such large and repetitive genomes. Whole Genome Profiling (WGP™) was developed recently as a new sequence-based physical mapping technology and has the potential to limit this problem. RESULTS: A subset of the wheat 3B chromosome BAC library covering 230 Mb was used to establish a WGP physical map and to compare it to a map obtained with the SNaPshot technology. We first adapted the WGP-based assembly methodology to cope with the complexity of the wheat genome. Then, the results showed that the WGP map covers the same length than the SNaPshot map but with 30% less contigs and, more importantly with 3.5 times less mis-assembled BACs. Finally, we evaluated the benefit of integrating WGP tags in different sequence assemblies obtained after Roche/454 sequencing of BAC pools. We showed that while WGP tag integration improves assemblies performed with unpaired reads and with paired-end reads at low coverage, it does not significantly improve sequence assemblies performed at high coverage (25x) with paired-end reads. CONCLUSIONS: Our results demonstrate that, with a suitable assembly methodology, WGP builds more robust physical maps than the SNaPshot technology in wheat and that WGP can be adapted to any genome. Moreover, WGP tag integration in sequence assemblies improves low quality assembly. However, to achieve a high quality draft sequence assembly, a sequencing depth of 25x paired-end reads is required, at which point WGP tag integration does not provide additional scaffolding value. Finally, we suggest that WGP tags can support the efficient sequencing of BAC pools by enabling reliable assignment of sequence scaffolds to their BAC of origin, a feature that is of great interest when using BAC pooling strategies to reduce the cost of sequencing large genomes.


Asunto(s)
Genoma de Planta , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADN/métodos , Triticum/genética , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Mapeo Contig , Elementos Transponibles de ADN , Alineación de Secuencia
5.
Genome Res ; 21(4): 618-25, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21324881

RESUMEN

We present whole genome profiling (WGP), a novel next-generation sequencing-based physical mapping technology for construction of bacterial artificial chromosome (BAC) contigs of complex genomes, using Arabidopsis thaliana as an example. WGP leverages short read sequences derived from restriction fragments of two-dimensionally pooled BAC clones to generate sequence tags. These sequence tags are assigned to individual BAC clones, followed by assembly of BAC contigs based on shared regions containing identical sequence tags. Following in silico analysis of WGP sequence tags and simulation of a map of Arabidopsis chromosome 4 and maize, a WGP map of Arabidopsis thaliana ecotype Columbia was constructed de novo using a six-genome equivalent BAC library. Validation of the WGP map using the Columbia reference sequence confirmed that 350 BAC contigs (98%) were assembled correctly, spanning 97% of the 102-Mb calculated genome coverage. We demonstrate that WGP maps can also be generated for more complex plant genomes and will serve as excellent scaffolds to anchor genetic linkage maps and integrate whole genome sequence data.


Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico/métodos , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Cromosomas Artificiales Bacterianos/genética , Biología Computacional , Mapeo Contig , Biblioteca Genómica
6.
PLoS One ; 2(12): e1326, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18094749

RESUMEN

BACKGROUND: Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented. PRINCIPAL FINDINGS: We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before). CONCLUSIONS: Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.


Asunto(s)
Secuencia de Consenso , Genoma de Planta , Heterocigoto , Vitis/genética , Cromosomas de las Plantas , ADN de Plantas/genética , Evolución Molecular , Fenoles/metabolismo , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Terpenos/metabolismo , Factores de Transcripción/metabolismo , Vitis/metabolismo
7.
Theor Appl Genet ; 113(1): 81-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16783592

RESUMEN

A sunflower BAC library consisting of 147,456 clones with an average size of 118 kb has been constructed and characterized. It represents approximately 5x sunflower haploid genome equivalents. The BAC library has been arranged in pools and superpools of DNA allowing screening with various PCR-based markers. Each of the 32 superpools contains 4,608 clones and corresponds to a 36 matrix pools. Thus, the screening of the entire library could be accomplished in less than 80 PCR reactions including positive and negative controls. As a demonstration of the feasibility of the concept, a set of 24 SSR markers covering about 36 cM in the sunflower SSR map (Tang et al. in Theor Appl Genet 105:1124-1136, 2002) have been used to screen the BAC library. About 125 BAC clones have been identified and then organized in 23 contigs by HindIII digestion. The contigs are anchored on the SSR map and thus constitutes a first-generation physical map of this region. The utility of this BAC library as a genomic resource for physical mapping and map-based cloning in sunflower is discussed.


Asunto(s)
Helianthus/genética , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Dermatoglifia del ADN , ADN de Plantas/genética , Biblioteca de Genes , Marcadores Genéticos , Genoma de Planta , Repeticiones de Minisatélite , Mapeo Físico de Cromosoma , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...