Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38787061

RESUMEN

Peptide toxins from marine invertebrates have found use as drugs and in biotechnological applications. Many marine habitats, however, remain underexplored for natural products, and the Southern Ocean is among them. Here, we report toxins from one of the top predators in Antarctic waters: the nemertean worm Parborlasia corrugatus (McIntosh, 1876). Transcriptome mining revealed a total of ten putative toxins with a cysteine pattern similar to that of alpha nemertides, four nemertide-beta-type sequences, and two novel full-length parborlysins. Nemertean worms express toxins in the epidermal mucus. Here, the expression was determined by liquid chromatography combined with mass spectrometry. The findings include a new type of nemertide, 8750 Da, containing eight cysteines. In addition, we report the presence of six cysteine-containing peptides. The toxicity of tissue extracts and mucus fractions was tested in an Artemia assay. Notably, significant activity was observed both in tissue and the high-molecular-weight mucus fraction, as well as in a parborlysin fraction. Membrane permeabilization experiments display the membranolytic activity of some peptides, most prominently the parborlysin fraction, with an estimated EC50 of 70 nM.


Asunto(s)
Péptidos , Animales , Regiones Antárticas , Péptidos/toxicidad , Péptidos/química , Toxinas Marinas/toxicidad , Toxinas Marinas/química , Toxinas Marinas/análisis , Moco/metabolismo , Moco/química , Artemia
2.
Biomedicines ; 11(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831040

RESUMEN

Is it possible to enhance structural stability and biological activity of KR-12, a truncated antimicrobial peptide derived from the human host defense peptide LL-37? Based on the mapping of essential residues in KR-12, we have designed backbone-cyclized dimers, cross-linked via a disulfide bond to improve peptide stability, while at the same time improving on-target activity. Circular dichroism showed that each of the dimers adopts a primarily alpha-helical conformation (55% helical content) when bound to lyso-phosphatidylglycerol micelles, indicating that the helical propensity of the parent peptide is maintained in the new cross-linked cyclic form. Compared to KR-12, one of the cross-linked dimers showed 16-fold more potent antimicrobial activity against human pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans and 8-fold increased activity against Escherichia coli. Furthermore, these peptides retained antimicrobial activity at physiologically relevant conditions, including in the presence of salts and in human serum, and with selective Gram-negative antibacterial activity in rich growth media. In addition to giving further insight into the structure-activity relationship of KR-12, the current work demonstrates that by combining peptide stabilization strategies (dimerization, backbone cyclization, and cross-linking via a disulfide bond), KR-12 can be engineered into a potent antimicrobial peptide drug lead with potential utility in a therapeutic context.

3.
J Nat Prod ; 86(1): 52-65, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36525646

RESUMEN

Cyclotides are an intriguing class of structurally stable circular miniproteins of plant origin with numerous potential pharmaceutical and agricultural applications. To investigate the occurrence of cyclotides in Sri Lankan flora, 50 medicinal plants were screened, leading to the identification of a suite of new cyclotides from Geophila repens of the family Rubiaceae. Cycloviolacin O2-like (cyO2-like) gere 1 and the known cyclotide kalata B7 (kB7) were among the cyclotides characterized at the peptide and/or transcript level together with several putative enzymes, likely involved in cyclotide biosynthesis. Five of the most abundant cyclotides were isolated, sequenced, structurally characterized, and screened in antimicrobial and cytotoxicity assays. All gere cyclotides showed cytotoxicity (IC50 of 2.0-10.2 µM), but only gere 1 inhibited standard microbial strains at a minimum inhibitory concentration of 4-16 µM. As shown by immunohistochemistry, large quantities of the cyclotides were localized in the epidermis of the leaves and petioles of G. repens. Taken together with the cytotoxicity and membrane permeabilizing activities, this implicates gere cyclotides as potential plant defense molecules. The presence of cyO2-like gere 1 in a plant in the Rubiaceae supports the notion that phylogenetically distant plants may have coevolved to express similar cytotoxic cyclotides for a specific functional role, most likely involving host defense.


Asunto(s)
Ciclotidas , Plantas Medicinales , Rubiaceae , Secuencia de Aminoácidos , Ciclotidas/química , Proteínas de Plantas/química , Rubiaceae/química , Sri Lanka
4.
Cell Mol Life Sci ; 79(8): 411, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821354

RESUMEN

The increasing antibiotic resistance among uropathogenic bacteria warrants alternative therapeutic strategies. We demonstrate the potential of the synthetic peptide CD4-PP, designed by dimerization and backbone cyclization of the shortest antimicrobial region of human cathelicidin, LL-37. CD4-PP is active against clinical and type strains of common uropathogens Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa at concentrations substantially below cellular cytotoxic levels and induced membrane deformation and leakage in E. coli and P. aeruginosa. Furthermore, CD4-PP treatment prevented the formation of new biofilm and dissolved mature biofilm created by E. coli and P. aeruginosa and targeted curli amyloid in E. coli biofilms. In addition, CD4-PP also induced production of LL-37 by uroepithelial cells and increased the expression of tight junction proteins claudin-14 and occludin. During uroepithelial cell infection, CD4-PP significantly reduced uropathogen survival when treatment was given at the start of infection. Low micromolar of CD4-PP treatment initiated after 2 h was successful with all tested species, except P. aeruginosa where CD4-PP was unable to reduce survival, which could be attributed by early biofilm formation. Finally, we demonstrated that urinary catheter pieces coated with saline fluid supplemented with CD4-PP reduced the attachment of E. coli, giving it a potential clinical application.


Asunto(s)
Péptidos Antimicrobianos , Escherichia coli , Biopelículas , Humanos , Klebsiella pneumoniae , Pseudomonas aeruginosa
5.
Phytochemistry ; 187: 112749, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33932786

RESUMEN

Cyclotides are an extremely stable class of peptides, ubiquitously distributed in Violaceae. The aim of the present study was to investigate the presence of cyclotides in Sri Lankan Violaceae plants, using combined tools of transcriptomics and mass spectrometry. New cyclotides were discovered for the first time in the wild flora of Sri Lanka, within Viola betonicifolia, a plant used in traditional medicine as an antimicrobial. Plant extracts prepared in small scale from Viola betonicifolia were first subjected to LC-MS analysis. Subsequent transcriptome de novo sequencing of Viola betonicifolia uncovered 25 new (vibe 1-25) and three known (varv A/kalata S, viba 17, viba 11) peptide sequences from Möbius and bracelet cyclotide subfamilies as well as hybrid cyclotides. Among the transcripts, putative linear acyclotide sequences (vibe 4, vibe 10, vibe 11 and vibe 22) that lack a conserved asparagine or aspartic acid vital for cyclisation were also present. Four asparagine endopeptidases (AEPs), VbAEP1-4 were found within the Viola betonicifolia transcriptome, including a peptide asparaginyl ligase (PAL), potentially involved in cyclotide backbone cyclisation, showing >93% sequence homology to Viola yedoensis peptide asparaginyl ligases, VyPALs. In addition, we identified two protein disulfide isomerases (PDIs), VbPDI1-2, likely involved in cyclotide oxidative folding, having high sequence homology (>74%) with previously reported Rubiaceae and Violaceae PDIs. The current study highlights the ubiquity of cyclotides in Violaceae as well as the utility of transcriptomic analysis for cyclotides and their putative processing enzyme discovery. The high variability of cyclotide sequences in terms of loop sizes and residues in V. betonicifolia showcase the cyclotide structure as an adaptable scaffold as well as their importance as a combinatorial library, implicated in plant defense.


Asunto(s)
Ciclotidas , Viola , Secuencia de Aminoácidos , Ciclotidas/genética , Espectrometría de Masas , Proteínas de Plantas/metabolismo , Sri Lanka , Transcriptoma , Viola/genética , Viola/metabolismo
6.
ACS Chem Biol ; 15(11): 2937-2944, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33054165

RESUMEN

Pedobacter cryoconitis strain UP508 was isolated from a soil sample using a mixture of ampicillin, kanamycin, and nalidixic acid for selection. UP508 was found to produce >30 unknown antibacterial peptides, of which eight, isopedopeptins A-H (1-8), were isolated by bioassay-guided fractionation and characterized with respect to structures and biological properties. Compounds 1-8 were all composed of nine amino acid residues and one 3-hydroxy fatty acid residue, and the structures were ring-closed via an ester bond from the C-terminal aspartic acid to the 3-hydroxy fatty acid. The differences between the peptides were the size and branching of the 3-hydroxy fatty acid and the presence of a valine or a 3-hydroxyvaline residue. The isopedopeptins mainly had activity against Gram-negative bacteria, and isopedopeptin B (2), which had the best combination of antibacterial activity, in vitro cytotoxicity, and hemolytic properties, was selected for further studies against a larger panel of Gram-negative bacteria. Isopedopeptin B was found to have good activity against strains of WHO top-priority Gram-negative bacteria, i.e., carbapenem-resistant Acinetobacter baumannii, Escherichia coli, and Pseudomonas aeruginosa, with minimal inhibitory concentrations (MIC) down to 1, 2, and 4 µg/mL, respectively. Furthermore, compound 2 had activity against colistin-resistant strains of A. baumannii, E. coli, and Klebsiella pneumoniae, with a MIC down to 8, 2, and 4 µg/mL, respectively. Compound 6 was tested in an E. coli liposome system where it induced significant leakage, indicating membrane disruption as one mechanism involved in isopedopeptin antibacterial activity. Isopedopeptin B stands out as a promising candidate for further studies with the goal to develop a new antibiotic drug.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Pedobacter/química , Péptidos Cíclicos/farmacología , Escherichia coli/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/química , Pseudomonas aeruginosa/efectos de los fármacos , Organización Mundial de la Salud
7.
Front Microbiol ; 11: 168, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153522

RESUMEN

Can antimicrobial activity and peptide stability of alpha-helical peptides be increased by making them into dimers and macrocycles? Here, we explore that concept by using KR-12 as the starting point for peptide engineering. KR-12 has previously been determined as the minimalized antimicrobial fragment of the human host defense peptide LL-37. Backbone-cyclized KR-12 dimers, tethered by linkers of two to four amino acid residues, were synthesized and their antimicrobial activity, proteolytic stability and structures characterized. A modified KR-12 sequence, with substitutions at previously identified key residues, were also included in the screening panel. The backbone cyclized KR-12 dimers showed improved antimicrobial activity and increased stability compared to monomeric KR-12. The most active cyclic dimer displayed 16-fold higher antibacterial activity compared to KR-12 against Pseudomonas aeruginosa and Staphylococcus aureus, and 8-fold increased fungicidal activity against Candida albicans. It also showed increased hemolytic and cytotoxic activity. Enhanced antimicrobial activity coincided with increased membrane permeabilization of liposomes with one distinct discrepancy: monomeric KR-12 was much less disruptive of liposomes with bacterial lipid composition compared to liposomes from fungal lipid extract. Circular dichroism showed that the four-residue linked most active cyclic dimer had 65% helical content when bound to lyso-phosphatidylglycerol micelles, indicating that the helical propensity of the parent peptide is maintained in the new macrocyclic form. In conclusion, the current work on KR-12 suggests that dimerization together with backbone cyclization is an effective strategy for improving both potency and stability of linear antimicrobial peptides.

8.
J Ethnopharmacol ; 246: 112158, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31421182

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sri Lanka is known to have very diverse flora. Many of these species are used for plant-based remedies, which form the integral part of two Sri Lankan systems of traditional medicine, Ayurveda and Deshiya Chikitsa. Despite their widespread use, only a limited number of studies have probed into the scientific evidence for bioactivity of these medicinal plants. Such studies rarely progress to the identification of bioactive natural products. AIM OF THE STUDY: The primary aim was to develop a bioactivity screening method and apply it to 50 Sri Lankan medicinal plants where antimicrobial properties could be relevant for its traditional use. The subsequent aim was the progression into defining and characterising potent isolates within targeted compound classes from such plants, i.e. Derris scandens and its antimicrobial flavonoids. MATERIAL AND METHODS: The plant collection comprised 24 species of Fabaceae, 15 Rubiaceae, 7 Solanaceae and 4 Cucurbitaceae plants. These 50 species were collected based on their ethnopharmacological importance and use in Sri Lankan traditional medicine. Crude extracts from each species were initially subjected to radial disc diffusion and microdilution assays. Subsequently, aqueous extracts of all plants were microfractionated in deep well plates using reversed-phase HPLC. Fractions were tested for antibacterial and cytotoxic activities and masses of target bioactive compounds were identified using mass spectrometry. Bioactive compounds with the masses identified through microfractions were isolated from Derris scandens using reversed-phase HPLC. The isolated pure compounds were characterised using LC-MS and NMR. RESULTS: Crude aqueous extracts from 19 species showed activity against Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) in the radial disc diffusion assay. Crude aqueous extracts from 34 plant species and organic extracts from 46 plant species were active against S. aureus (≤4 mg mL-1) in the microdilution assay. Microfractionation demonstrated antibacterial activity for 19 plants and cytotoxicity for 6 plants. Furthermore, target bioactive compounds and their molecular ions were identified during microfractionation. Dalpanitin and vicenin-3, two of the flavonoids isolated from Derris scandens gave MICs of 23 µg mL-1 against S. aureus. Dalpanitin also exhibited relevant MICs on Gram-negative bacteria (94 µg mL-1 against Escherichia coli and Pseudomonas aeruginosa). CONCLUSION: The microfractionation protocol developed in this study enabled time-efficient screening of many plants species, using a small quantity of sample material. In addition, microfractionation served as a guiding tool for identifying individual antimicrobial compounds. Through this process, flavonoids were isolated from Derris scandens, out of which dalpanitin and vicenin-3 showed activity in the low micromolar range. The high hit rate for in vitro antibacterial properties from this ethnopharmacologically guided sample collection gives credence to Sri Lankan traditional herbal medicine as a source for drug discovery.


Asunto(s)
Antibacterianos/aislamiento & purificación , Flavonoides/aislamiento & purificación , Magnoliopsida/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fraccionamiento Químico , Flavonoides/farmacología , Humanos , Extractos Vegetales/química , Plantas Medicinales/metabolismo , Metabolismo Secundario , Sri Lanka
9.
J Colloid Interface Sci ; 562: 71-80, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-31837621

RESUMEN

Effects of size and charge of anionic nanoclays on their interactions with bacteria-mimicking lipid membranes, bacterial lipopolysaccharide (LPS), and Gram-negative bacteria were investigated using ellipsometry, dynamic light scattering, ζ-potential measurements, and confocal microscopy combined with Live/Dead staining. Based on particle size and charge density, three different anionic hectorite nanoclays were employed, and investigated in the presence and absence of the net cationic human antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES). In the absence of this peptide, the nanoclays were found not to bind to similarly anionic bacteria-mimicking model phospholipid membranes, nor to destabilize these. Similarly, while all nanoclays induced aggregation of Escherichia coli bacteria, the flocculated bacteria remained alive after aggregation. In contrast, LL-37 alone, i.e. in the absence of nanoclay particles, displays antimicrobial properties through membrane lysis, but does not cause bacterial aggregation in the concentration range investigated. After loading the nanoclays with LL-37, potent bacterial aggregation combined with bacterial membrane lysis was observed for all nanoclay sizes and charge densities. Demonstrating the potential of these combined systems for confinement of infection, LPS-induced NF-κB activation in human monocytes was found to be strongly suppressed after nanoclay-mediated aggregation, with a wide tolerance for nanoparticle size and charge density.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Arcilla/química , Escherichia coli/química , Nanoestructuras/química , Floculación , Humanos , Catelicidinas
10.
J Pept Sci ; 25(12): e3223, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31713951

RESUMEN

Previously Os, a 22 amino acid sequence of a defensin from the soft tick Ornithodoros savignyi, was found to kill Gram-positive and Gram-negative bacteria at low micromolar concentrations. In this study, we evaluated synthetic peptide analogues of Os for antibacterial activity with an aim to identify minimalized active peptide sequences and in so doing obtain a better understanding of the structural requirements for activity. Out of eight partially overlapping sequences of 10 to 12 residues, only Os(3-12) and Os(11-22) exhibit activity when screened against Gram-positive and Gram-negative bacteria. Carboxyamidation of both peptides increased membrane-mediated activity, although carboxyamidation of Os(11-22) negatively impacted on activity against Staphylococcus aureus. The amidated peptides, Os(3-12)NH2 and Os(11-22)NH2 , have minimum bactericidal concentrations of 3.3 µM against Escherichia coli. Killing was reached within 10 minutes for Os(3-12)NH2 and only during the second hour for Os(11-22)NH2 . In an E. coli membrane liposome system, both Os and Os(3-12)NH2 were identified as membrane disrupting while Os(11-22)NH2 was less active, indicating that in addition to membrane permeabilization, other targets may be involved in bacterial killing. In contrast to Os, the membrane disruptive effect of Os(3-12)NH2 did not diminish in the presence of salt. Neither Os nor its amidated derivatives caused human erythrocyte haemolysis. The contrasting killing kinetics and effects of amidation together with structural and liposome leakage data suggest that the 3-12 fragment relies on a membrane disruptive mechanism while the 11-22 fragment involves additional target mechanisms. The salt-resistant potency of Os(3-12)NH2 identifies it as a promising candidate for further development.


Asunto(s)
Amidas/farmacología , Antibacterianos/farmacología , Defensinas/farmacología , Fragmentos de Péptidos/farmacología , Amidas/química , Animales , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Defensinas/química , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Fragmentos de Péptidos/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
11.
ACS Appl Mater Interfaces ; 11(17): 15389-15400, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30951282

RESUMEN

The antimicrobial effects of Laponite nanoparticles with or without loading of the antimicrobial peptide LL-37 was investigated along with their membrane interactions. The study combines data from ellipsometry, circular dichroism, fluorescence spectroscopy, particle size/ζ potential measurements, and confocal microscopy. As a result of the net negative charge of Laponite, loading of net positively charged LL-37 increases with increasing pH. The peptide was found to bind primarily to the outer surface of the Laponite nanoparticles in a predominantly helical conformation, leading to charge reversal. Despite their net positive charge, peptide-loaded Laponite nanoparticles did not kill Gram-negative Escherichia coli bacteria or disrupt anionic model liposomes. They did however cause bacteria flocculation, originating from the interaction of Laponite and bacterial lipopolysaccharide (LPS). Free LL-37, in contrast, is potently antimicrobial through membrane disruption but does not induce bacterial aggregation in the concentration range investigated. Through LL-37 loading of Laponite nanoparticles, the combined effects of bacterial flocculation and membrane lysis are observed. However, bacteria aggregation seems to be limited to Gram-negative bacteria as Laponite did not cause flocculation of Gram-positive Bacillus subtilis bacteria nor did it bind to lipoteichoic acid from bacterial envelopes. Taken together, the present investigation reports several novel phenomena by demonstrating that nanoparticle charge does not invariably control membrane destabilization and by identifying the ability of anionic Laponite nanoparticles to effectively flocculate Gram-negative bacteria through LPS binding. As demonstrated in cell experiments, such aggregation results in diminished LPS-induced cell activation, thus outlining a promising approach for confinement of infection and inflammation caused by such pathogens.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Nanopartículas/química , Silicatos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Dicroismo Circular , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Liposomas/química , Liposomas/metabolismo , Nanopartículas/metabolismo , Tamaño de la Partícula , Silicatos/metabolismo , Catelicidinas
12.
Biomacromolecules ; 19(12): 4691-4702, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30427659

RESUMEN

Herein, we report on the formation of cross-linked antimicrobial peptide-loaded microgel multilayers. Poly(ethyl acrylate- co-methacrylic acid) microgels were synthesized and functionalized with biotin to enable the formation of microgel multilayers cross-linked with avidin. Microgel functionalization and avidin cross-linking were verified with infrared spectroscopy, dynamic light scattering, and z-potential measurements, while multilayer formation (up to four layers) was studied with null ellipsometry and quartz crystal microbalance with dissipation (QCM-D). Incorporation of the antimicrobial peptide KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR) into the microgel multilayers was achieved either in one shot after multilayer formation or through addition after each microgel layer deposition. The latter was found to strongly promote peptide incorporation. Further, antimicrobial properties of the peptide-loaded microgel multilayers against Escherichia coli were investigated and compared to those of a peptide-loaded microgel monolayer. Results showed a more pronounced suppression in bacterial viability in suspension for the microgel multilayers. Correspondingly, LIVE/DEAD staining showed promoted disruption of adhered bacteria for the KYE28-loaded multilayers. Taken together, cross-linked microgel multilayers thus show promise as high load surface coatings for antimicrobial peptides.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Portadores de Fármacos/farmacología , Escherichia coli/efectos de los fármacos , Resinas Acrílicas/química , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Avidina/química , Biotina/química , Reactivos de Enlaces Cruzados/química , Portadores de Fármacos/química , Escherichia coli/patogenicidad , Geles/química , Geles/farmacología , Humanos , Propiedades de Superficie
13.
Front Plant Sci ; 9: 1296, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254654

RESUMEN

Cyclotides are cyclic plant polypeptides of 27-37 amino acid residues. They have been extensively studied in bioengineering and drug development contexts. However, less is known about the relevance of cyclotides for the plants producing them. The anti-insect larvae effects of kB1 and antibacterial activity of cyO2 suggest that cyclotides are a part of plant host defense. The sweet violet (Viola odorata L.) produces a wide array of cyclotides, including kB1 (kalata B1) and cyO2 (cycloviolacin O2), with distinct presumed biological roles. Here, we evaluate V. odorata cyclotides' potency against plant pathogens and their mode of action using bioassays, liposome experiments and immunogold labeling for transmission electron microscopy (TEM). We explore the link between the biological activity and distribution in plant generative, vegetative tissues and seeds, depicted by immunohistochemistry and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). Cyclotides cyO2, cyO3, cyO13, and cyO19 are shown to have potent activity against model fungal plant pathogens (Fusarium oxysporum, F. graminearum, F. culmorum, Mycosphaerella fragariae, Botrytis cinerea) and fungi isolated from violets (Colletotrichum utrechtense and Alternaria alternata), with minimal inhibitory concentrations (MICs) ranging from 0.8 µM to 25 µM. Inhibition of phytopathogenic bacteria - Pseudomonas syringae pv. syringae, Dickeya dadantii and Pectobacterium atrosepticum - is also observed with MIC = 25-100 µM. A membrane-disrupting antifungal mode of action is shown. Finding cyO2 inside the fungal spore cells in TEM images may indicate that other, intracellular targets may be involved in the mechanism of toxicity. Fungi can not break down cyclotides in the course of days. varv A (kalata S) and kB1 show little potency against pathogenic fungi when compared with the tested cycloviolacins. cyO2, cyO3, cyO19 and kB1 are differentially distributed and found in tissues vulnerable to pathogen (epidermis, rizodermis, vascular bundles, protodermis, procambium, ovary walls, outer integuments) and pest (ground tissues of leaf and petiole) attacks, respectively, indicating a link between the cyclotides' sites of accumulation and biological role. Cyclotides emerge as a comprehensive defense system in V. odorata, in which different types of peptides have specific targets that determine their distribution in plant tissues.

14.
Biomacromolecules ; 19(8): 3456-3466, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29976055

RESUMEN

Here we report on covalently immobilized poly(ethyl acrylate- co-methacrylic acid) microgels loaded with the host defense peptide KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR), which is derived from human heparin cofactor II, as well as its poly(ethylene glycol)-conjugated (PEGylated) version, KYE28PEG. Peptide loading and release, as well as the consequences of these processes on the microgel and peptide properties, were studied by in situ ellipsometry, confocal microscopy, zeta potential measurements, and circular dichroism spectroscopy. The results show that the microgel-peptide interactions are electrostatically dominated, thus promoted at higher microgel charge density, while PEGylation suppresses peptide binding. PEGylation also enhances the α-helix induction observed for KYE28 upon microgel incorporation. Additionally, peptide release is facilitated at physiological salt concentration, particularly so for KYE28PEG, which illustrates the importance of electrostatic interactions. In vitro studies on Escherichia coli show that the microgel-modified surfaces display potent antifouling properties in both the absence and presence of the incorporated peptide. While contact killing dominates at low ionic strength for the peptide-loaded microgels, released peptides also provide antimicrobial activity in bulk at a high ionic strength. Additionally, KYE28- and KYE28PEG-loaded microgels display anti-inflammatory effects on human monocytes. Taken together, these results not only show that surface-bound microgels offer an interesting approach for local drug delivery of host defense peptides but also illustrate the need to achieve high surface loads of peptides for efficient biological effects.


Asunto(s)
Antiinfecciosos/química , Antiinflamatorios/química , Hidrogeles/química , Péptidos/química , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Escherichia coli/efectos de los fármacos , Humanos , Hidrogeles/farmacología , Monocitos/efectos de los fármacos , Concentración Osmolar , Polietilenglicoles/química , Electricidad Estática
15.
J Immunol ; 201(3): 1007-1020, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29925677

RESUMEN

Collagen VI is a ubiquitous extracellular matrix component that forms extensive microfibrillar networks in most connective tissues. In this study, we describe for the first time, to our knowledge, that the collagen VI von Willebrand factor type A-like domains exhibit a broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria in human skin infections in vivo. In silico sequence and structural analysis of VWA domains revealed that they contain cationic and amphipathic peptide sequence motifs, which might explain the antimicrobial nature of collagen VI. In vitro and in vivo studies show that these peptides exhibited significant antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa through membrane disruption. Our findings shed new light on the role of collagen VI-derived peptides in innate host defense and provide templates for development of peptide-based antibacterial therapies.


Asunto(s)
Antibacterianos/inmunología , Colágeno Tipo VI/inmunología , Péptidos/inmunología , Bacterias/inmunología , Infecciones Bacterianas/inmunología , Humanos , Inmunidad Innata/inmunología , Dominios Proteicos/inmunología , Piel/inmunología , Piel/microbiología , Enfermedades Cutáneas Bacterianas/inmunología
16.
J Pept Sci ; 24(7): e3086, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29799150

RESUMEN

Antimicrobial peptides (AMPs) are promising broad-spectrum antibiotic candidates in the wake of multi-drug resistant pathogens. Their clinical use still requires a solution based on lead optimisation and/or formulation to overcome certain limitations, such as unwanted cytotoxicity. A prodrug approach could overcome this safety barrier and can be achieved through reversible reduction or neutralisation of the AMPs' net cationic charge. By prodrug activation through pathogen associated enzymes, this approach could increase the therapeutic index of membrane active peptides. P18, a cecropin/magainin hybrid, and WMR, a myxinidin analogue from hagfish, were used as templates for the design strategy. The membrane permeabilizing activities of these AMPs and their prodrugs are reported here for liposomes of either Escherichia coli polar lipid extract or a human model lipid system of phosphatidylcholine and cholesterol. These results are compared with their antibacterial and haemolytic activities. Overall, correlation between liposome permeabilization and the corresponding bioactivity is observed and indicate that the broad-spectrum antibacterial effect exerted by these peptides is associated with membrane disruption. Furthermore, the prodrug modification had a general negative influence on membrane disruption and bioactivity, notably as much on bacterial as on human membranes. This prodrug strategy is particularly successful when complete neutralisation of the AMP's net charge occurs. Thus, on-target selectivity between bacterial and human membranes can be improved, which may be used to prevent the unnecessary exposure of host cells and commensal bacteria to active AMPs.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Péptidos/farmacología , Profármacos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/síntesis química , Péptidos/química , Profármacos/síntesis química , Profármacos/química , Relación Estructura-Actividad
17.
Chembiochem ; 19(9): 931-939, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29430821

RESUMEN

The human host defence peptide LL-37 is a broad-spectrum antibiotic with immunomodulatory functions. Residues 18-29 in LL-37 have previously been identified as a minimal peptide (KR-12) that retains antibacterial activity with decreased cytotoxicity. In this study, analogues of KR-12 were generated by Ala and Lys scans to identify key elements for activity. These were tested against a panel of human pathogens and for membrane permeabilisation on liposomes. Replacements of hydrophobic and cationic residues with Ala were detrimental for antibiotic potency. Substitutions by Lys increased activity, as long as the increase in cationic density did not disrupt the amphiphilic disposition of the helical structure. Importantly, substitutions showed differential effects against different organisms. Replacement of Gln5 with Lys and Asp9 with Ala or Lys improved the broad-spectrum activity most, each resulting in up to an eightfold increase in potency against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The improved analogues displayed no significant toxicity against human cells, and thus, KR-12 is a tuneable template for antibiotic development.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Catelicidinas/química , Catelicidinas/farmacología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Alanina/química , Alanina/genética , Alanina/farmacología , Alanina/toxicidad , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antiinfecciosos/metabolismo , Antiinfecciosos/toxicidad , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/toxicidad , Candida albicans/efectos de los fármacos , Catelicidinas/genética , Catelicidinas/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Lisina/química , Lisina/genética , Lisina/farmacología , Lisina/toxicidad , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/toxicidad , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
18.
Biochim Biophys Acta Biomembr ; 1859(10): 1986-2000, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28669767

RESUMEN

Cyclotides are a family of plant peptides characterized by a cystine knot embedded in a macrocyclic backbone. They bind to and disrupt phospholipid membranes, which explain their lytic activity on cells. In this study, we expose the full antibacterial potency of cyclotides by avoiding its inhibition by rich growth media assay conditions. For that purpose a two-step microdilution assay protocol was developed, using non-growing conditions during initial peptide incubation. A diverse set of cyclotides was tested for antibacterial and antifungal activity, and the results show that most cyclotides are active under these conditions, especially against Gram-negative bacteria. Activity was observed at sub-micromolar concentrations for three of the cyclotides tested, surpassing that of the control peptides LL-37 and melittin. Noteworthy, two anionic cyclotides were active on Pseudomonas aeruginosa at low micromolar concentrations. Broad-spectrum activity was pronounced among cycloviolacin cyclotides, which included activity on Staphylococcus aureus and Candida albicans. The factors influencing their bactericidal spectrum were revealed by correlating antimicrobial activity with membrane permeabilization on various liposome systems and with the physiochemical properties of the cyclotides. Whereas general electrostatic and hydrophobic parameters are more important for broad-spectrum cyclotides; a phospholipid-specific mechanism of membrane permeabilization, through interaction with phosphatidylethanolamine-lipids, is essential for cyclotides active primarily on Gram-negative bacteria.


Asunto(s)
Antiinfecciosos/farmacocinética , Ciclotidas/farmacología , Lípidos/fisiología , Fosfatidiletanolaminas/metabolismo , Fosfolípidos/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Cistina/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Electricidad Estática
19.
PLoS Pathog ; 13(3): e1006261, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28323883

RESUMEN

Ever since the discovery of endogenous host defense antimicrobial peptides it has been discussed how these evolutionary conserved molecules avoid to induce resistance and to remain effective. Human ß-defensin 1 (hBD1) is an ubiquitously expressed endogenous antimicrobial peptide that exhibits qualitatively distinct activities between its oxidized and reduced forms. Here, we explore these antimicrobial mechanisms. Surprisingly, using electron microscopy we detected a so far unknown net-like structure surrounding bacteria, which were treated with the reduced but not the oxidized form of hBD1. A transmigration assay demonstrated that hBD1-derived nets capture bacteria and inhibit bacterial transmigration independent of bacterial killing. The presence of nets could completely prevent migration of hBD1 resistant pathogens and are stable in the presence of human duodenal secretion with a high amount of proteases. In contrast to HD6, cysteins are necessary for net formation. This redox-dependent function serves as an additional mechanism of action for hBD1 and differs from net formation by other defensins such as Paneth cell-derived human α-defensin 6 (HD6). While hBD1red and hBD1ox have distinct antimicrobial profiles and functions, only the reduced form provides additional host protection by entrapping bacteria in extracellular net structures preventing bacterial invasion. Better understanding of the modes of action of endogenous host peptides will help to find new antimicrobial strategies.


Asunto(s)
Bacterias/inmunología , beta-Defensinas/inmunología , Líquidos Corporales/metabolismo , Duodeno/metabolismo , Citometría de Flujo , Humanos , Microscopía Electrónica , Oxidación-Reducción , beta-Defensinas/metabolismo
20.
Anal Chem ; 89(2): 1194-1201, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27991763

RESUMEN

The recent increase in extensively drug-resistant bacterial pathogens and the associated increase of morbidity and mortality demonstrate the immediate need for new antibiotic backbones with novel mechanisms of action. Here, we report the development of the PepSAVI-MS pipeline for bioactive peptide discovery. This highly versatile platform employs mass spectrometry and statistics to identify bioactive peptide targets from complex biological samples. We validate the use of this platform through the successful identification of known bioactive peptides from a botanical species, Viola odorata. Using this pipeline, we have widened the known antimicrobial spectrum for V. odorata cyclotides, including antibacterial activity of cycloviolacin O2 against A. baumannii. We further demonstrate the broad applicability of the platform through the identification of novel anticancer activities for cycloviolacins by their cytotoxicity against ovarian, breast, and prostate cancer cell lines.


Asunto(s)
Antibacterianos/química , Antineoplásicos Fitogénicos/química , Productos Biológicos/química , Ciclotidas/química , Descubrimiento de Drogas , Viola/química , Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Antineoplásicos Fitogénicos/farmacología , Productos Biológicos/farmacología , Línea Celular Tumoral , Ciclotidas/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Biblioteca de Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...