Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Angew Chem Int Ed Engl ; : e202400350, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602024

RESUMEN

Macrocycles offer an attractive format for drug development due to their good binding properties and potential to cross cell membranes. To efficiently identify macrocyclic ligands for new targets, methods for the synthesis and screening of large combinatorial libraries of small cyclic peptides were developed, many of them using thiol groups for efficient peptide macrocyclization. However, a weakness of these libraries is that invariant thiol-containing building blocks such as cysteine are used, resulting in a region that does not contribute to library diversity but increases molecule size. Herein, we synthesized a series of structurally diverse thiol-containing elements and used them for the combinatorial synthesis of a 2,688-member library of small, structurally diverse peptidic macrocycles with unprecedented skeletal complexity. We then used this library to discover potent thrombin and plasma kallikrein inhibitors, some also demonstrating favorable membrane permeability. X-ray structure analysis of macrocycle-target complexes showed that the size and shape of the newly developed thiol elements are key for binding. The strategy and library format presented in this work significantly enhance structural diversity by allowing combinatorial modifications to a previously invariant region of peptide macrocycles, which may be broadly applied in the development of membrane permeable therapeutics.

2.
Nucl Med Biol ; 132-133: 108905, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38555651

RESUMEN

DOTATATE is a somatostatin peptide analog used in the clinic to detect somatostatin receptors which are highly expressed on neuroendocrine tumors. Somatostatin receptors are found naturally in the intestines, pancreas, lungs, and brain (mainly cortex). In vivo measurement of the somatostatin receptors in the cortex has been challenging because available tracers cannot cross the blood-brain barrier (BBB) due to their intrinsic polarity. A peptide called melittin, a main component of honeybee venom, has been shown to disrupt plasma membranes and increase the permeability of biological membranes. In this study, we assessed the feasibility of using melittin to facilitate the passage of [64Cu]Cu-DOTATATE through the BBB and its binding to somatostatin receptors in the cortex. Evaluation included in vitro autoradiography on Long Evans rat brains to estimate the binding affinity of [64Cu]Cu-DOTATATE to the somatostatin receptors in the cortex and an in vivo evaluation of [64Cu]Cu-DOTATATE binding in NMRI mice after injection of melittin. This study found an in vitro Bmax = 89 ± 4 nM and KD = 4.5 ± 0.6 nM in the cortex, resulting in a theoretical binding potential (BP) calculated as Bmax/KD ≈ 20, which is believed suitable for in vivo brain PET imaging. However, the in vivo results showed no significant difference between the control and melittin injected mice, indicating that the honeybee venom failed to open the BBB. Additional experiments, potentially involving faster injection rates are required to verify that melittin can increase brain uptake of non-BBB permeable PET tracers. Furthermore, an evaluation of whether a venom with a narrow therapeutic range can be used for clinical purposes needs to be considered.

3.
Sci Adv ; 10(9): eadg2636, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427737

RESUMEN

Human genome-wide association studies (GWAS) suggest a functional role for central glutamate receptor signaling and plasticity in body weight regulation. Here, we use UK Biobank GWAS summary statistics of body mass index (BMI) and body fat percentage (BF%) to identify genes encoding proteins known to interact with postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors. Loci in/near discs large homolog 4 (DLG4) and protein interacting with C kinase 1 (PICK1) reached genome-wide significance (P < 5 × 10-8) for BF% and/or BMI. To further evaluate the functional role of postsynaptic density protein-95 (PSD-95; gene name: DLG4) and PICK1 in energy homeostasis, we used dimeric PSD-95/disc large/ZO-1 (PDZ) domain-targeting peptides of PSD-95 and PICK1 to demonstrate that pharmacological inhibition of PSD-95 and PICK1 induces prolonged weight-lowering effects in obese mice. Collectively, these data demonstrate that the glutamate receptor scaffolding proteins, PICK1 and PSD-95, are genetically linked to obesity and that pharmacological targeting of their PDZ domains represents a promising therapeutic avenue for sustained weight loss.


Asunto(s)
Estudio de Asociación del Genoma Completo , Receptores AMPA , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/genética
4.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37987012

RESUMEN

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney caused ciliary elongation and cystogenesis, and cell-based proximity labelling proteomics and fluorescence microscopy showed alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20 and polycystin-2 (PC2) were reduced in cilia of DLG1 deficient cells compared to control cells. This phenotype was recapitulated in vivo and rescuable by re-expression of wildtype DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggested that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.

5.
Biochim Biophys Acta Proteins Proteom ; 1872(3): 140989, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142947

RESUMEN

VANGL2 is a core component of the non-canonical Wnt/Planar Cell Polarity signaling pathway that uses its highly conserved carboxy-terminal type 1 PDZ-binding motif (PBM) to bind a variety of PDZ proteins. In this study, we characterize and quantitatively assess the largest VANGL2 PDZome-binding profile documented so far, using orthogonal methods. The results of our holdup approach support VANGL2 interactions with a large panel of both long-recognized and unprecedented PDZ domains. Truncation and point mutation analyses of the VANGL2 PBM establish that, beyond the strict requirement of the P-0 / V521 and P-2 / T519 amino acids, upstream residues, including E518, Q516 and R514 at, respectively, P-3, P-5 and P-7 further contribute to the robustness of VANGL2 interactions with two distinct PDZ domains, SNX27 and SCRIBBLE-PDZ3. In agreement with these data, incremental amino-terminal deletions of the VANGL2 PBM causes its overall affinity to progressively decline. Moreover, the holdup data establish that the PDZome binding repertoire of VANGL2 starts to diverge significantly with the truncation of E518. A structural analysis of the SYNJ2BP-PDZ/VANGL2 interaction with truncated PBMs identifies a major conformational change in the binding direction of the PBM peptide after the P-2 position. Finally, we report that the PDZome binding profile of VANGL2 is dramatically rearranged upon phosphorylation of S517, T519 and S520. Our crystallographic approach illustrates how SYNJ2BP accommodates a S520-phosphorylated PBM peptide through the ideal positioning of two basic residues, K48 and R86. Altogether our data provides a comprehensive view of the VANGL2 PDZ network and how this network specifically responds to the post-translation modification of distinct PBM residues. These findings should prove useful in guiding future functional and molecular studies of the key PCP component VANGL2.


Asunto(s)
Aminoácidos , Polaridad Celular , Fosforilación , Procesamiento Proteico-Postraduccional , Péptidos
6.
Magn Reson (Gott) ; 4(1): 57-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904802

RESUMEN

Peptides and proteins containing non-canonical amino acids (ncAAs) are a large and important class of biopolymers. They include non-ribosomally synthesised peptides, post-translationally modified proteins, expressed or synthesised proteins containing unnatural amino acids, and peptides and proteins that are chemically modified. Here, we describe a general procedure for generating atomic descriptions required to incorporate ncAAs within popular NMR structure determination software such as CYANA, CNS, Xplor-NIH and ARIA. This procedure is made publicly available via the existing Automated Topology Builder (ATB) server (https://atb.uq.edu.au, last access: 17 February 2023) with all submitted ncAAs stored in a dedicated database. The described procedure also includes a general method for linking of side chains of amino acids from CYANA templates. To ensure compatibility with other systems, atom names comply with IUPAC guidelines. In addition to describing the workflow, 3D models of complex natural products generated by CYANA are presented, including vancomycin. In order to demonstrate the manner in which the templates for ncAAs generated by the ATB can be used in practice, we use a combination of CYANA and CNS to solve the structure of a synthetic peptide designed to disrupt Alzheimer-related protein-protein interactions. Automating the generation of structural templates for ncAAs will extend the utility of NMR spectroscopy to studies of more complex biomolecules, with applications in the rapidly growing fields of synthetic biology and chemical biology. The procedures we outline can also be used to standardise the creation of structural templates for any amino acid and thus have the potential to impact structural biology more generally.

7.
Peptides ; 168: 171063, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37495041

RESUMEN

Growth differentiation factor 15 (GDF15) is believed to be a major causative factor for cancer-induced cachexia. Recent elucidation of the central circuits involved in GDF15 function and its signaling through the glial cell-derived neurotrophic factor family receptor α-like (GFRAL) has prompted the interest of targeting the GDF15-GFRAL signaling for energy homeostasis and body weight regulation. Here, we applied advanced peptide technologies to identify GDF15 peptide fragments inhibiting GFRAL signaling. SPOT peptide arrays revealed binding of GDF15 C-terminal peptide fragments to the extracellular domain of GFRAL. Parallel solid-phase peptide synthesis allowed for generation of complementary GDF15 peptide libraries and their subsequent functional evaluation in cells expressing the GFRAL/RET receptor complex. We identified a series of C-terminal fragments of GDF15 inhibiting GFRAL activity in the micromolar range. These novel GFRAL peptide inhibitors could serve as valuable tools for further development of peptide therapeutics towards the treatment of cachexia and other wasting disorders.


Asunto(s)
Caquexia , Obesidad , Humanos , Caquexia/metabolismo , Obesidad/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Factor 15 de Diferenciación de Crecimiento/metabolismo , Fragmentos de Péptidos/farmacología , Peso Corporal/fisiología
8.
Brain Res ; 1817: 148496, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499733

RESUMEN

Generation of amyloid-ß (Aß) peptides through the proteolytic processing of the amyloid precursor protein (APP) is a pathogenic event in Alzheimer's disease (AD). APP is a transmembrane protein and endocytosis of APP mediated by the YENPTY motif is a key step in Aß generation. Mints, a family of cytosolic adaptor proteins, directly bind to the YENPTY motif of APP and facilitate APP trafficking and processing. Here, we generated and examined two Mint1 mutants, Tyr633Ala of Mint1 (Mint1Y633A) that enhanced APP binding, and Tyr549Ala and Phe610Ala mutant (Mint1Y549A/F610A), that reduced APP binding. We investigated how perturbing the APP-Mint1 interaction through these Mint1 mutants alter APP and Mint1 cellular dynamics and Mint1's interaction with its other binding partners. We found that Mint1Y633A increased binding affinity specifically for APP and presenilin1 (catalytic subunit of γ-secretase), that subsequently enhanced APP endocytosis in primary murine neurons. Conversely, Mint1Y549A/F610A exhibited reduced APP affinity and Aß secretion. The effect of Mint1Y549A/F610A on Aß release was greater compared to knocking down all three Mint proteins supporting the APP-Mint1 interaction is a critical factor in Aß production. Altogether, this study highlights the potential of targeting the APP-Mint1 interaction as a therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Neuronas/metabolismo
9.
J Mol Biol ; 435(11): 168039, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37330291

RESUMEN

Functional bacterial amyloid provides structural stability in biofilm, making it a promising target for anti-biofilm therapeutics. Fibrils formed by CsgA, the major amyloid component in E. coli are extremely robust and can withstand very harsh conditions. Like other functional amyloids, CsgA contains relatively short aggregation-prone regions (APR) which drive amyloid formation. Here, we demonstrate the use of aggregation-modulating peptides to knock down CsgA protein into aggregates with low stability and altered morphology. Remarkably, these CsgA-peptides also modulate fibrillation of the unrelated functional amyloid protein FapC from Pseudomonas, possibly through recognition of FapC segments with structural and sequence similarity with CsgA. The peptides also reduce the level of biofilm formation in E. coli and P. aeruginosa, demonstrating the potential for selective amyloid targeting to combat bacterial biofilm.


Asunto(s)
Amiloide , Proteínas Bacterianas , Biopelículas , Proteínas de Escherichia coli , Escherichia coli , Péptidos , Agregado de Proteínas , Amiloide/química , Proteínas Amiloidogénicas/química , Proteínas Bacterianas/química , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Péptidos/química , Péptidos/farmacología , Pseudomonas aeruginosa/metabolismo , Estabilidad Proteica
10.
iScience ; 26(4): 106492, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37091255

RESUMEN

The macrocyclic depsipeptides YM-254890 (YM) and FR900359 (FR) are potent inhibitors of Gαq/11 proteins. They are important pharmacological tools and have potential as therapeutic drugs. The hydrogenated, tritium-labeled YM and FR derivatives display largely different residence times despite similar structures. In the present study we established a competition-association binding assay to determine the dissociation kinetics of unlabeled Gq protein inhibitors. Structure-affinity and structure-residence time relationships were analyzed. Small structural modifications had a large impact on residence time. YM and FR exhibited 4- to 10-fold higher residence times than their hydrogenated derivatives. While FR showed pseudo-irreversible binding, YM displayed much faster dissociation from its target. The isopropyl anchor present in FR and some derivatives was essential for slow dissociation. These data provide a basis for future drug design toward modulating residence times of macrocyclic Gq protein inhibitors, which has been recognized as a crucial determinant for therapeutic outcome.

11.
J Med Chem ; 66(4): 3045-3057, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36749163

RESUMEN

Peptides targeting disease-relevant protein-protein interactions are an attractive class of therapeutics covering the otherwise undruggable space between small molecules and therapeutic proteins. However, peptides generally suffer from poor metabolic stability and low membrane permeability. Hence, peptide cyclization has become a valuable approach to develop linear peptide motifs into metabolically stable and potentially cell-permeable cyclic leads. Furthermore, cyclization of side chains, also known as "stapling", can stabilize particular secondary peptide structures. Here, we demonstrate that a comprehensive examination of cyclization strategies in terms of position, chemistry, and length is a prerequisite for the selection of optimal cyclic peptide scaffolds. Our systematic approach identifies cyclic APP dodecamer peptides targeting the phosphotyrosine binding domain of Mint2 with substantially improved affinity. We show that especially all-hydrocarbon stapling provides improved metabolic stability, a significantly stabilized secondary structure and membrane permeability.


Asunto(s)
Precursor de Proteína beta-Amiloide , Péptidos Cíclicos , Ciclización , Péptidos Cíclicos/química , Estructura Secundaria de Proteína , Precursor de Proteína beta-Amiloide/química , Unión Proteica , Fosfotirosina/química
12.
Elife ; 122023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36688536

RESUMEN

Amyloid-ß precursor protein (APP) regulates neuronal activity through the release of secreted APP (sAPP) acting at cell surface receptors. APP and sAPP were reported to bind to the extracellular sushi domain 1 (SD1) of GABAB receptors (GBRs). A 17 amino acid peptide (APP17) derived from APP was sufficient for SD1 binding and shown to mimic the inhibitory effect of sAPP on neurotransmitter release and neuronal activity. The functional effects of APP17 and sAPP were similar to those of the GBR agonist baclofen and blocked by a GBR antagonist. These experiments led to the proposal that sAPP activates GBRs to exert its neuronal effects. However, whether APP17 and sAPP influence classical GBR signaling pathways in heterologous cells was not analyzed. Here, we confirm that APP17 binds to GBRs with nanomolar affinity. However, biochemical and electrophysiological experiments indicate that APP17 does not influence GBR activity in heterologous cells. Moreover, APP17 did not regulate synaptic GBR localization, GBR-activated K+ currents, neurotransmitter release, or neuronal activity in vitro or in vivo. Our results show that APP17 is not a functional GBR ligand and indicate that sAPP exerts its neuronal effects through receptors other than GBRs.


Asunto(s)
Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
13.
J Med Chem ; 66(1): 976-990, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36580549

RESUMEN

The complex between the N-methyl-d-aspartate receptor (NMDAR), neuronal nitric oxide synthase (nNOS), and the postsynaptic density protein-95 (PSD-95) is an attractive therapeutic target for the treatment of acute ischemic stroke. The complex is formed via the PDZ protein domains of PSD-95, and efforts to disrupt the complex have generally been based on C-terminal peptides derived from the NMDAR. However, nNOS binds PSD-95 through a ß-hairpin motif, providing an alternative starting point for developing PSD-95 inhibitors. Here, we designed a cyclic nNOS ß-hairpin mimetic peptide and generated cyclic nNOS ß-hairpin peptide arrays with natural and unnatural amino acids (AAs), which provided molecular insights into this interaction. We then optimized cyclic peptides and identified a potent inhibitor of the nNOS/PSD-95 interaction, with the highest affinity reported thus far for a peptide macrocycle inhibitor of PDZ domains, which serves as a template for the development of treatment for acute ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Humanos , Óxido Nítrico Sintasa de Tipo I , Péptidos Cíclicos/farmacología , Proteínas de la Membrana/metabolismo , Homólogo 4 de la Proteína Discs Large
14.
J Biol Chem ; 298(12): 102688, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36370848

RESUMEN

Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced ß-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 µM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.


Asunto(s)
Péptidos de Penetración Celular , Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Péptidos de Penetración Celular/aislamiento & purificación , Péptidos de Penetración Celular/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Línea Celular Tumoral
15.
Viruses ; 14(10)2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36298757

RESUMEN

Viruses are dependent on host factors in order to efficiently establish an infection and replicate. Targeting the interactions of such host factors provides an attractive strategy to develop novel antivirals. Syntenin is a protein known to regulate the architecture of cellular membranes by its involvement in protein trafficking and has previously been shown to be important for human papilloma virus (HPV) infection. Here, we show that a highly potent and metabolically stable peptide inhibitor that binds to the PDZ1 domain of syntenin inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by blocking the endosomal entry of the virus. Furthermore, we found that the inhibitor also hampered chikungunya infection and strongly reduced flavivirus infection, which is completely dependent on receptor-mediated endocytosis for their entry. In conclusion, we have identified a novel broad spectrum antiviral inhibitor that efficiently targets a broad range of RNA viruses.


Asunto(s)
COVID-19 , Virus ARN , Humanos , SARS-CoV-2 , Sinteninas , Antivirales/farmacología , Antivirales/química , Internalización del Virus
16.
Angew Chem Int Ed Engl ; 61(47): e202204565, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130196

RESUMEN

The sirtuin enzymes are a family of lysine deacylases that regulate gene transcription and metabolism. Sirtuin 5 (SIRT5) hydrolyzes malonyl, succinyl, and glutaryl ϵ-N-carboxyacyllysine posttranslational modifications and has recently emerged as a vulnerability in certain cancers. However, chemical probes to illuminate its potential as a pharmacological target have been lacking. Here we report the harnessing of aryl fluorosulfate-based electrophiles as an avenue to furnish covalent inhibitors that target SIRT5. Alkyne-tagged affinity-labeling agents recognize and capture overexpressed SIRT5 in cultured HEK293T cells and can label SIRT5 in the hearts of mice upon intravenous injection of the compound. This work demonstrates the utility of aryl fluorosulfate electrophiles for targeting of SIRT5 and suggests this as a means for the development of potential covalent drug candidates. It is our hope that these results will serve as inspiration for future studies investigating SIRT5 and general sirtuin biology in the mitochondria.


Asunto(s)
Neoplasias , Sirtuinas , Humanos , Animales , Ratones , Lisina , Células HEK293 , Sirtuinas/química , Neoplasias/genética
17.
Angew Chem Int Ed Engl ; 61(22): e202115805, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35299278

RESUMEN

Sirtuin 5 (SIRT5) is a protein lysine deacylase enzyme that regulates diverse biology by hydrolyzing ϵ-N-carboxyacyllysine posttranslational modifications in the cell. Inhibition of SIRT5 has been linked to potential treatment of several cancers but potent compounds with activity in cells have been lacking. Here we developed mechanism-based inhibitors that incorporate isosteres of a carboxylic acid residue that is important for high-affinity binding to the enzyme active site. By masking of the tetrazole moiety of the most potent candidate from our initial SAR study, we achieved potent and cytoselective growth inhibition for the treatment of SIRT5-dependent leukemic cancer cell lines in culture. Thus, we provide an efficient, cellularly active small molecule that targets SIRT5, which can help elucidate its function and potential as a future drug target. This work shows that masked isosteres of carboxylic acids are viable chemical motifs for the development of inhibitors that target mitochondrial enzymes, which may have applications beyond the sirtuin field.


Asunto(s)
Profármacos , Sirtuinas , Ácidos Carboxílicos/farmacología , Humanos , Lisina/química , Procesamiento Proteico-Postraduccional
18.
iScience ; 25(2): 103808, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198873

RESUMEN

The organization of the postsynaptic density (PSD), a protein-dense semi-membraneless organelle, is mediated by numerous specific protein-protein interactions (PPIs) which constitute a functional postsynapse. The PSD protein 95 (PSD-95) interacts with a manifold of proteins, including the C-terminal of transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs). Here, we uncover the minimal essential peptide responsible for the Stargazin (TARP-γ2)-mediated liquid-liquid phase separation (LLPS) formation of PSD-95 and other key protein constituents of the PSD. Furthermore, we find that pharmacological inhibitors of PSD-95 can facilitate the formation of LLPS. We found that in some cases LLPS formation is dependent on multivalent interactions, while in other cases short, highly charged peptides are sufficient to promote LLPS in complex systems. This study offers a new perspective on PSD-95 interactions and their role in LLPS formation, while also considering the role of affinity over multivalency in LLPS systems.

19.
iScience ; 24(11): 103268, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34761188

RESUMEN

Postsynaptic density protein 95 is a key scaffolding protein in the postsynaptic density of excitatory glutamatergic neurons, organizing signaling complexes primarily via its three PSD-95/Discs-large/Zona occludens domains. PSD-95 is regulated by phosphorylation, but technical challenges have limited studies of the molecular details. Here, we genetically introduced site-specific phosphorylations in single, tandem, and full-length PSD-95 and generated a total of 11 phosphorylated protein variants. We examined how these phosphorylations affected binding to known interaction partners and the impact on phase separation of PSD-95 complexes and identified two new phosphorylation sites with opposing effects. Phosphorylation of Ser78 inhibited phase separation with the glutamate receptor subunit GluN2B and the auxiliary protein stargazin, whereas phosphorylation of Ser116 induced phase separation with stargazin only. Thus, by genetically introducing phosphoserine site-specifically and exploring the impact on phase separation, we have provided new insights into the regulation of PSD-95 by phosphorylation and the dynamics of the PSD.

20.
ACS Omega ; 6(34): 21960-21970, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34497891

RESUMEN

Functional amyloids are highly organized protein/peptide structures that inter alia promote biofilm formation in different bacteria. One such example is provided by a family of 20-45 residue-long peptides called phenol-soluble modulins (PSMs) from Staphylococcus aureus. External components such as eukaryotic host proteins, which alter self-assembly of bacterial amyloids, can affect the biofilm matrix. Here, we studied the effect of the highly prevalent human plasma protein fibrinogen (Fg) on fibrillation of PSMs. Fg inhibits or suppresses fibrillation of most PSMs tested (PSMα1, PSMß1, and PSMß2) except for PSMα3, whose already rapid aggregation is accelerated even further by Fg but leads to amorphous ß-rich aggregates rather than fibrils. Fg also induces PSMß2 to form amorphous aggregates and diverts PSMα1 into off-pathway oligomers which consist of both Fg and PSMα1 and cannot seed fibrillation. Peptide arrays showed that Fg bound to the N-terminus of PSMα1, while it bound to the entire length of PSMα3 (except the C terminus) and to the C-termini of PSMß1 and PSMß2. The latter peptides are all positively charged, while Fg is negatively charged at physiological pH. The positive charges complement Fg's net negative charge of -7.6 at pH 7.4. Fg's ability to inhibit PSM fibrillation reveals a potential host-defense mechanism to prevent bacterial biofilm growth and infections in the human body.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA