Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 326(4): R311-R318, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38344803

RESUMEN

Aphagic hibernators such as the golden-mantled ground squirrel (GMGS; Callospermophilus lateralis) can fast for months and exhibit profound seasonal fluctuations in body weight, food intake, and behavior. Brain-derived neurotrophic factor (BDNF) regulates cellular and systemic metabolism via mechanisms that are conserved across mammalian species. In this study, we characterized regional changes in BDNF with hibernation, hypothermia, and seasonal cycle in GMGS. Analysis of BDNF protein concentrations by ELISA revealed overlapping seasonal patterns in the hippocampus and hypothalamus, where BDNF levels were highest in summer and lowest in winter. BDNF is the primary ligand for receptor tyrosine kinase B (TrkB), and BDNF/TrkB signaling in the brain potently regulates energy expenditure. To examine the functional relevance of seasonal variation in BDNF, hibernating animals were injected with the small molecule TrkB agonist 7,8-dihydroxyflavone (DHF) daily for 2 wk. When compared with vehicle, DHF-treated animals exhibited fewer torpor bouts and shorter bout durations. These results suggest that activating BDNF/TrkB disrupts hibernation and raise intriguing questions related to the role of BDNF as a potential regulatory mechanism or downstream response to seasonal changes in body temperature and environment.NEW & NOTEWORTHY Golden-mantled ground squirrels exhibit dramatic seasonal fluctuations in metabolism and can fast for months while hibernating. Brain-derived neurotrophic factor is an essential determinant of cellular and systemic metabolism, and in this study, we characterized seasonal fluctuations in BDNF expression and then administered the small molecule BDNF mimetic 7,8-dihydroxyflavone (DHF) in hibernating squirrels. The results indicate that activating BDNF/TrkB signaling disrupts hibernation, with implications for synaptic homeostasis in prolonged hypometabolic states.


Asunto(s)
Hibernación , Animales , Hibernación/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estaciones del Año , Temperatura Corporal/fisiología , Sciuridae/metabolismo
2.
Brain Behav Immun ; 115: 131-142, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820974

RESUMEN

Region-specific genetic manipulation of glial cells remains challenging due to the lack of anatomically selective transgenic models. Although local transduction is achievable with viral vectors, uniform recombination can be challenging in larger brain regions. We investigated the efficacy of intraparenchymal delivery of the tamoxifen metabolite endoxifen using inducible cre reporter mice. After observing localized reporter induction following stereotaxic injections of endoxifen in CX3CR1creERT2 mice, we carried out chronic delivery via osmotic pumps attached to bilateral cannulas made of stainless steel or microfluidic polymer fibers. Analysis of reporter expression in sections or iDISCO-cleared brains from TMEM119creERT2 mice revealed widespread induction following chronic infusion. Neuronal damage and gliosis were more prevalent around steel cannulas than polymer fibers, and glial reactivity was further attenuated when devices were implanted two months before drug delivery. In summary, region-specific recombination is achievable in glia with minimal tissue damage after endoxifen delivery via microfluidic polymer implants.


Asunto(s)
Microglía , Polímeros , Ratones , Animales , Microglía/metabolismo , Microfluídica , Tamoxifeno/farmacología
3.
Diabetes ; 72(2): 245-260, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367881

RESUMEN

Preferential energy storage in subcutaneous adipose tissue (SAT) confers protection against obesity-induced pathophysiology in females. Females also exhibit distinct immunological responses, relative to males. These differences are often attributed to sex hormones, but reciprocal interactions between metabolism, immunity, and gonadal steroids remain poorly understood. We systematically characterized adipose tissue hypertrophy, sex steroids, and inflammation in male and female mice after increasing durations of high-fat diet (HFD)-induced obesity. After observing that sex differences in adipose tissue distribution before HFD were correlated with lasting protection against inflammation in females, we hypothesized that a priori differences in the ratio of subcutaneous to visceral fat might mediate this relationship. To test this, male and female mice underwent SAT lipectomy (LPX) or sham surgery before HFD challenge, followed by analysis of glial reactivity, adipose tissue inflammation, and reproductive steroids. Because LPX eliminated female resistance to the proinflammatory effects of HFD without changing circulating sex hormones, we conclude that sexually dimorphic organization of subcutaneous and visceral fat determines susceptibility to inflammation in obesity.


Asunto(s)
Enfermedades Neuroinflamatorias , Caracteres Sexuales , Femenino , Masculino , Ratones , Animales , Distribución Tisular , Obesidad/metabolismo , Inflamación , Hormonas Esteroides Gonadales
4.
Sci Transl Med ; 14(663): eadd2376, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130017

RESUMEN

Accumulation of lipid-laden foam cells in the arterial wall plays a central role in atherosclerotic lesion development, plaque progression, and late-stage complications of atherosclerosis. However, there are still fundamental gaps in our knowledge of the underlying mechanisms leading to foam cell formation in atherosclerotic arteries. Here, we investigated the role of receptor-independent macropinocytosis in arterial lipid accumulation and pathogenesis of atherosclerosis. Genetic inhibition of fluid-phase macropinocytosis in myeloid cells (LysMCre+ Nhe1fl/fl) and repurposing of a Food and Drug Administration (FDA)-approved drug that inhibits macrophage macropinocytosis substantially decreased atherosclerotic lesion development in low-density lipoprotein (LDL) receptor-deficient and Apoe-/- mice. Stimulation of macropinocytosis using genetic (H-RASG12V) and physiologically relevant approaches promoted internalization of unmodified native (nLDL) and modified [e.g., acetylated (ac) and oxidized (ox) LDL] lipoproteins in both wild-type and scavenger receptor (SR) knockout (Cd36-/-/Sra-/-) macrophages. Pharmacological inhibition of macropinocytosis in hypercholesterolemic wild-type and Cd36-/-/Sra-/- mice identified an important role of macropinocytosis in LDL uptake by lesional macrophages and development of atherosclerosis. Furthermore, serial section high-resolution imaging, LDL immunolabeling, and three-dimensional (3D) reconstruction of subendothelial foam cells provide visual evidence of lipid macropinocytosis in both human and murine atherosclerotic arteries. Our findings complement the SR paradigm of atherosclerosis and identify a therapeutic strategy to counter the development of atherosclerosis and cardiovascular disease.


Asunto(s)
Aterosclerosis , Células Espumosas , Animales , Apolipoproteínas E/genética , Arterias/patología , Aterosclerosis/patología , Antígenos CD36 , Células Espumosas/metabolismo , Células Espumosas/patología , Humanos , Lipoproteínas LDL/metabolismo , Ratones , Ratones Noqueados
5.
Front Integr Neurosci ; 16: 894500, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573444

RESUMEN

The nervous and immune systems are intimately related in the brain and in the periphery, where changes to one affect the other and vice-versa. Immune cells are responsible for sculpting and pruning neuronal synapses, and play key roles in neuro-development and neurological disease pathology. The immune composition of the brain is tightly regulated from the periphery through the blood-brain barrier (BBB), whose maintenance is driven to a significant extent by extracellular matrix (ECM) components. After a brain insult, the BBB can become disrupted and the composition of the ECM can change. These changes, and the resulting immune infiltration, can have detrimental effects on neurophysiology and are the hallmarks of several diseases. In this review, we discuss some processes that may occur after insult, and potential consequences to brain neuroimmunology and disease progression. We then highlight future research directions and opportunities for further tool development to probe the neuro-immune interface.

6.
Neuropharmacology ; 205: 108920, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902347

RESUMEN

The 'apple-shaped' anatomical pattern that accompanies visceral adiposity increases risk for multiple chronic diseases, including conditions that impact the brain, such as diabetes and hypertension. However, distinguishing between the consequences of visceral obesity, as opposed to visceral adiposity-associated metabolic and cardiovascular pathologies, presents certain challenges. This review summarizes current literature on relationships between adipose tissue distribution and cognition in preclinical models and highlights unanswered questions surrounding the potential role of tissue- and cell type-specific insulin resistance in these effects. While gaps in knowledge persist related to insulin insensitivity and cognitive impairment in obesity, several recent studies suggest that cells of the neurovascular unit contribute to hippocampal synaptic dysfunction, and this review interprets those findings in the context of progressive metabolic dysfunction in the CNS. Signalling between cerebrovascular endothelial cells, astrocytes, microglia, and neurons has been linked with memory deficits in visceral obesity, and this article describes the cellular changes in each of these populations with respect to their role in amplification or diminution of peripheral signals. The picture emerging from these studies, while incomplete, implicates pro-inflammatory cytokines, insulin resistance, and hyperglycemia in various stages of obesity-induced hippocampal dysfunction. As in the parable of the five blind wanderers holding different parts of an elephant, considerable work remains in order to assemble a model for the underlying mechanisms linking visceral adiposity with age-related cognitive decline.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Hiperglucemia , Hiperinsulinismo , Inflamación , Obesidad Abdominal , Animales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/metabolismo , Hipocampo/inmunología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Hiperglucemia/etiología , Hiperglucemia/inmunología , Hiperglucemia/metabolismo , Hiperinsulinismo/etiología , Hiperinsulinismo/inmunología , Hiperinsulinismo/metabolismo , Inflamación/etiología , Inflamación/inmunología , Inflamación/metabolismo , Obesidad Abdominal/complicaciones , Obesidad Abdominal/inmunología , Obesidad Abdominal/metabolismo
7.
Nat Commun ; 12(1): 4623, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330904

RESUMEN

Visceral obesity increases risk of cognitive decline in humans, but subcutaneous adiposity does not. Here, we report that beige adipocytes are indispensable for the neuroprotective and anti-inflammatory effects of subcutaneous fat. Mice lacking functional beige fat exhibit accelerated cognitive dysfunction and microglial activation with dietary obesity. Subcutaneous fat transplantation also protects against chronic obesity in wildtype mice via beige fat-dependent mechanisms. Beige adipocytes restore hippocampal synaptic plasticity following transplantation, and these effects require the anti-inflammatory cytokine interleukin-4 (IL4). After observing beige fat-mediated induction of IL4 in meningeal T-cells, we investigated the contributions of peripheral lymphocytes in donor fat. There was no sign of donor-derived lymphocyte trafficking between fat and brain, but recipient-derived lymphocytes were required for the effects of transplantation on cognition and microglial morphology. These findings indicate that beige adipocytes oppose obesity-induced cognitive impairment, with a potential role for IL4 in the relationship between beige fat and brain function.


Asunto(s)
Adipocitos Beige/metabolismo , Tejido Adiposo Beige/metabolismo , Adiposidad , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Adipocitos Beige/citología , Animales , Antiinflamatorios/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Dieta Alta en Grasa/efectos adversos , Humanos , Interleucina-4/metabolismo , Ratones Obesos , Plasticidad Neuronal/fisiología , Fármacos Neuroprotectores/metabolismo , Obesidad/etiología , Obesidad/fisiopatología , Grasa Subcutánea/trasplante , Linfocitos T/metabolismo
8.
Ageing Res Rev ; 64: 101175, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32971259

RESUMEN

Inquiry into relationships between energy metabolism and brain function requires a uniquely interdisciplinary mindset, and implementation of anti-aging lifestyle strategies based on this work also involves consistent mental and physical discipline. Dr. Mark P. Mattson embodies both of these qualities, based on the breadth and depth of his work on neurobiological responses to energetic stress, and on his own diligent practice of regular exercise and caloric restriction. Dr. Mattson created a neurotrophic niche in his own laboratory, allowing trainees to grow their skills, form new connections, and eventually migrate, forming their own labs while remaining part of the extended lab family. In this historical review, we highlight Dr. Mattson's many contributions to understanding neurobiological responses to physical exercise and dietary restriction, with an emphasis on the mechanisms that may underlie neuroprotection in ageing and age-related disease. On the occasion of Dr. Mattson's retirement from the National Institute on Aging, we highlight his foundational work on metabolism and neuroplasticity by reviewing the context for these findings and considering their impact on future research on the neuroscience of aging.


Asunto(s)
Envejecimiento , Restricción Calórica , Metabolismo Energético , Ejercicio Físico , Humanos , Plasticidad Neuronal
9.
J Clin Invest ; 130(4): 1961-1976, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935195

RESUMEN

Induction of the inflammasome protein cryopyrin (NLRP3) in visceral adipose tissue (VAT) promotes release of the proinflammatory cytokine IL-1ß in obesity. Although this mechanism contributes to peripheral metabolic dysfunction, effects on the brain remain unexplored. We investigated whether visceral adipose NLRP3 impairs cognition by activating microglial IL-1 receptor 1 (IL-1R1). After observing protection against obesity-induced neuroinflammation and cognitive impairment in NLRP3-KO mice, we transplanted VAT from obese WT or NLRP3-KO donors into lean recipient mice. Transplantation of VAT from a WT donor (TRANSWT) increased hippocampal IL-1ß and impaired cognition, but VAT transplants from comparably obese NLRP3-KO donors (TRANSKO) had no effect. Visceral adipose NLRP3 was required for deficits in long-term potentiation (LTP) in transplant recipients, and LTP impairment in TRANSWT mice was IL-1 dependent. Flow cytometric and gene expression analyses revealed that VAT transplantation recapitulated the effects of obesity on microglial activation and IL-1ß gene expression, and visualization of hippocampal microglia revealed similar effects in vivo. Inducible ablation of IL-1R1 in CX3CR1-expressing cells eliminated cognitive impairment in mice with dietary obesity and in transplant recipients and restored immunoquiescence in hippocampal microglia. These results indicate that visceral adipose NLRP3 impairs memory via IL-1-mediated microglial activation and suggest that NLRP3/IL-1ß signaling may underlie correlations between visceral adiposity and cognitive impairment in humans.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Cognición , Hipocampo/metabolismo , Grasa Intraabdominal/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Obesidad/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/genética , Hipocampo/patología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Grasa Intraabdominal/patología , Grasa Intraabdominal/trasplante , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Obesidad/genética , Obesidad/patología , Receptores Tipo I de Interleucina-1/genética , Transducción de Señal/genética
10.
J Neurosci ; 39(21): 4179-4192, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30886019

RESUMEN

Obesity and insulin resistance elicit blood-brain barrier (BBB) breakdown in humans and animal models, but the relative contributions of the two pathologies remain poorly understood. These studies initially addressed the temporal progression of cerebrovascular dysfunction relative to dietary obesity or diet-induced insulin resistance in male mice. Obesity increased BBB permeability to the low molecular weight fluorophore sodium fluorescein (NaFl), whereas diet-induced insulin resistance increased permeability to both NaFl and Evans blue, which forms a high molecular weight complex with serum albumin. Serial section transmission electron microscopy analysis of hippocampal capillaries revealed that diabetes promotes involution of tight junctions, fenestration of endothelial cells, and pericyte regression. Chronic activation of adenosine receptor 2a (Adora2a) erodes tight junctions between endothelial cells of the cerebral vasculature in other models of chronic neuropathology, and we observed that acute Adora2a antagonism normalized BBB permeability in wild-type mice with diet-induced insulin resistance. Experiments in mice with inducible deletion of Adora2a in endothelial cells revealed protection against BBB breakdown with diet-induced insulin resistance, despite comparable metabolic dysfunction relative to nontransgenic littermates. Protection against BBB breakdown was associated with decreased vascular inflammation, recovery of hippocampal synaptic plasticity, and restoration of hippocampus-dependent memory. These findings indicate that Adora2a-mediated signaling in vascular endothelial cells disrupts the BBB in dietary obesity, and implicate cerebrovascular dysfunction as the underlying mechanism for deficits in synaptic plasticity and cognition with obesity and insulin resistance.SIGNIFICANCE STATEMENT The blood-brain barrier (BBB) restricts the entry of circulating factors into the brain, but obesity promotes BBB breakdown in humans and animal models. We used transgenic mice with resistance to BBB breakdown to investigate the role of neurovascular dysfunction in high-fat diet (HFD)-induced cognitive impairment. Transgenic mice with inducible ablation of Adora2a in endothelial cells were protected against BBB breakdown on HFD, despite comparable metabolic impairments relative to normal mice. Transgenic mice were also resistant to HFD-induced cognitive dysfunction and were protected against deficits in hippocampal synaptic plasticity. These findings indicate that Adora2a-mediated signaling in endothelial cells mediates obesity-induced BBB breakdown, and implicate cerebrovascular dysfunction as the mechanism for deficits in synaptic plasticity and cognition with obesity and diabetes.


Asunto(s)
Permeabilidad Capilar/fisiología , Disfunción Cognitiva/metabolismo , Resistencia a la Insulina/fisiología , Receptor de Adenosina A2A/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Disfunción Cognitiva/patología , Dieta Alta en Grasa/efectos adversos , Células Endoteliales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/metabolismo
11.
Hippocampus ; 28(12): 900-912, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30098276

RESUMEN

Diabetes increases adrenal steroids in humans and animal models, but potential interactions with psychological stress remain poorly understood. Diabetic rodents exhibit anxiety and reductions in hippocampal brain-derived neurotrophic factor (BDNF) expression, and these studies investigated whether loss of BDNF-driven hippocampal activity promotes anxiety and disinhibits the HPA axis. Mice with genetic obesity and diabetes (db/db) received intrahippocampal injections of lentivirus for BDNF overexpression (db/db-BDNFOE), and Wt mice received lentiviral constructs for BDNF knockdown (Wt-BDNFKD). Behavioral anxiety and glucocorticoid responses to acute restraint were compared with mice that received a fluorescent reporter (Wt-GFP, db/db-GFP). These experiments revealed that changes in hippocampal BDNF were necessary and sufficient for behavioral anxiety and HPA axis disinhibition. To examine patterns of stress-induced regional activity, we used algorithmic detection of cFos and automated segmentation of forebrain regions to generate maps of functional covariance, which were subsequently aligned with anatomical connectivity weights from the Brain Architecture Management database. db/db-GFP mice exhibited reduced activation of the hippocampal ventral subiculum (vSub) and anterior bed nucleus of stria terminalis (aBNST), and increases in the paraventricular hypothalamus (PVH), relative to Wt-GFP. BDNFKD recapitulated this pattern in Wt mice, and BDNFOE normalized activation of the vSub > aBNST > PVH pathway in db/db mice. Analysis of forebrain activation revealed largely overlapping patterns of network disruption in db/db-GFP and Wt-BDNFKD mice, implicating BDNF-driven hippocampal activity as a determinant of stress vulnerability in both the intact and diabetic brain.


Asunto(s)
Mapeo Encefálico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Psicológico/metabolismo , Análisis de Varianza , Animales , Ansiedad/metabolismo , Conducta Animal , Corticosterona/sangre , Retroalimentación Fisiológica , Genes Inmediatos-Precoces , Genes fos , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Núcleos Septales/fisiopatología
13.
Hum Mol Genet ; 27(9): 1497-1513, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29447348

RESUMEN

Genetic changes due to dietary intervention in the form of either calorie restriction (CR) or intermittent fasting (IF) are not reported in detail until now. However, it is well established that both CR and IF extend the lifespan and protect against neurodegenerative diseases and stroke. The current research aims were first to describe the transcriptomic changes in brains of IF mice and, second, to determine whether IF induces extensive transcriptomic changes following ischemic stroke to protect the brain from injury. Mice were randomly assigned to ad libitum feeding (AL), 12 (IF12) or 16 (IF16) h daily fasting. Each diet group was then subjected to sham surgery or middle cerebral artery occlusion and consecutive reperfusion. Mid-coronal sections of ipsilateral cerebral tissue were harvested at the end of the 1 h ischemic period or at 3, 12, 24 or 72 h of reperfusion, and genome-wide mRNA expression was quantified by RNA sequencing. The cerebral transcriptome of mice in AL group exhibited robust, sustained up-regulation of detrimental genetic pathways under ischemic stroke, but activation of these pathways was suppressed in IF16 group. Interestingly, the cerebral transcriptome of AL mice was largely unchanged during the 1 h of ischemia, whereas mice in IF16 group exhibited extensive up-regulation of genetic pathways involved in neuroplasticity and down-regulation of protein synthesis. Our data provide a genetic molecular framework for understanding how IF protects brain cells against damage caused by ischemic stroke, and reveal cellular signaling and bioenergetic pathways to target in the development of clinical interventions.


Asunto(s)
Isquemia Encefálica/genética , Ayuno/fisiología , Transcriptoma/genética , Animales , Restricción Calórica , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Transducción de Señal/genética , Transducción de Señal/fisiología
14.
Neurobiol Aging ; 57: 75-83, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28609678

RESUMEN

Type 2 diabetes is increasingly recognized as a risk factor for Alzheimer's disease, but the underlying mechanisms remain poorly understood. Hyperphosphorylation of the microtubule-associated protein tau has been reported in rodent models of diabetes, including db/db mice, which exhibit insulin resistance and chronically elevated glucocorticoids due to leptin receptor insufficiency. In this report, we investigated endocrine mechanisms for hippocampal tau phosphorylation in db/db and wild-type mice. By separately manipulating peripheral and intrahippocampal corticosterone levels, we determined that hippocampal corticosteroid exposure promotes tau phosphorylation and activates glycogen synthase kinase 3ß (GSK3ß). Subsequent experiments in hippocampal slice preparations revealed evidence for a nongenomic interaction between glucocorticoids and GSK3ß. To examine whether GSK3ß activation mediates tau phosphorylation and impairs memory in diabetes, db/db and wild-type mice received intrahippocampal infusions of TDZD-8, a non-ATP competitive thiadiazolidinone inhibitor of GSK3ß. Intrahippocampal TDZD-8 blocked tau hyperphosphorylation and normalized hippocampus-dependent memory in db/db mice, suggesting that pathological synergy between diabetes and Alzheimer's disease may involve glucocorticoid-mediated activation of GSK3ß.


Asunto(s)
Diabetes Mellitus Tipo 2/psicología , Glucocorticoides/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/fisiología , Memoria/fisiología , Fosforilación/efectos de los fármacos , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Glucocorticoides/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Hipocampo/metabolismo , Infusiones Intraventriculares , Resistencia a la Insulina , Masculino , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Receptores de Leptina/metabolismo , Tiadiazoles/administración & dosificación , Tiadiazoles/farmacología
15.
Endocrinology ; 158(5): 1160-1171, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28323991

RESUMEN

Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor-deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/terapia , Metabolismo Energético , Condicionamiento Físico Animal/fisiología , Receptores de Leptina/genética , Vibración/uso terapéutico , Adipocitos/metabolismo , Adipocitos/patología , Animales , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Metabolismo Energético/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/prevención & control
16.
Proc Natl Acad Sci U S A ; 114(5): 1177-1182, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096412

RESUMEN

Neurotransmission in dentate gyrus (DG) is critical for spatial coding, learning memory, and emotion processing. Although DG dysfunction is implicated in psychiatric disorders, including schizophrenia, underlying pathological mechanisms remain unclear. Here we report that transmembrane protein 108 (Tmem108), a novel schizophrenia susceptibility gene, is highly enriched in DG granule neurons and its expression increased at the postnatal period critical for DG development. Tmem108 is specifically expressed in the nervous system and enriched in the postsynaptic density fraction. Tmem108-deficient neurons form fewer and smaller spines, suggesting that Tmem108 is required for spine formation and maturation. In agreement, excitatory postsynaptic currents of DG granule neurons were decreased in Tmem108 mutant mice, indicating a hypofunction of glutamatergic activity. Further cell biological studies indicate that Tmem108 is necessary for surface expression of AMPA receptors. Tmem108-deficient mice display compromised sensorimotor gating and cognitive function. Together, these observations indicate that Tmem108 plays a critical role in regulating spine development and excitatory transmission in DG granule neurons. When Tmem108 is mutated, mice displayed excitatory/inhibitory imbalance and behavioral deficits relevant to schizophrenia, revealing potential pathophysiological mechanisms of schizophrenia.


Asunto(s)
Trastornos del Conocimiento/genética , Giro Dentado/fisiología , Filtrado Sensorial/genética , Proteínas de Transporte Vesicular/fisiología , Animales , Animales Recién Nacidos , Trastornos del Conocimiento/fisiopatología , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Electroporación , Potenciales Postsinápticos Excitadores/fisiología , Miedo , Genes Reporteros , Ácido Glutámico/fisiología , Células HEK293 , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Neuronas/fisiología , Neuronas/ultraestructura , Densidad Postsináptica/química , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores AMPA/biosíntesis , Esquizofrenia/genética , Filtrado Sensorial/fisiología , Transmisión Sináptica/fisiología , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética
17.
J Cereb Blood Flow Metab ; 36(12): 2108-2121, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27034250

RESUMEN

Accumulating evidence indicates that obesity accelerates the onset of cognitive decline. While mechanisms are still being identified, obesity promotes peripheral inflammation and increases blood-brain barrier (BBB) permeability. However, no studies have manipulated vascular permeability in obesity to determine whether BBB breakdown underlies memory deficits. Protein kinase Cß (PKCß) activation destabilizes the BBB, and we used a PKCß inhibitor (Enzastaurin) to block BBB leakiness in leptin receptor-deficient (db/db) mice. Enzastaurin reversed BBB breakdown in db/db mice and normalized hippocampal function without affecting obesity or metabolism. Flow cytometric analysis of forebrain mononuclear cells (FMCs) from db/db mice revealed macrophage infiltration and induction of the activation marker MHCII in microglia and macrophages. Enzastaurin eliminated macrophage infiltration and MHCII induction, and protein array profiling revealed parallel reductions in IL1ß, IL6, MCP1, and TNFα. To investigate whether these signals attract peripheral monocytes, FMCs from Wt and db/db mice were plated below migration inserts containing peritoneal macrophages. Peritoneal macrophages from db/db mice exhibit increases in transmigration that were blocked by recombinant IL1RA. These studies indicate that BBB breakdown impairs cognition in obesity and diabetes by allowing macrophage infiltration, with a potential role for IL1ß in trafficking of peripheral monocytes into the brain.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Disfunción Cognitiva/etiología , Macrófagos/citología , Receptores de Leptina/deficiencia , Animales , Barrera Hematoencefálica/efectos de los fármacos , Permeabilidad Capilar , Movimiento Celular , Interleucina-1beta/fisiología , Trastornos de la Memoria/etiología , Ratones , Monocitos/citología , Obesidad/fisiopatología
18.
Am J Physiol Heart Circ Physiol ; 310(3): H404-15, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26637556

RESUMEN

ANG II is thought to increase sympathetic outflow by increasing oxidative stress and promoting local inflammation in the paraventricular nucleus (PVN) of the hypothalamus. However, the relative contributions of inflammation and oxidative stress to sympathetic drive remain poorly understood, and the underlying cellular and molecular targets have yet to be examined. ANG II has been shown to enhance Toll-like receptor (TLR)4-mediated signaling on microglia. Thus, in the present study, we aimed to determine whether ANG II-mediated activation of microglial TLR4 signaling is a key molecular target initiating local oxidative stress in the PVN. We found TLR4 and ANG II type 1 (AT1) receptor mRNA expression in hypothalamic microglia, providing molecular evidence for the potential interaction between these two receptors. In hypothalamic slices, ANG II induced microglial activation within the PVN (∼65% increase, P < 0.001), an effect that was blunted in the absence of functional TLR4. ANG II increased ROS production, as indicated by dihydroethidium fluorescence, within the PVN of rats and mice (P < 0.0001 in both cases), effects that were also dependent on the presence of functional TLR4. The microglial inhibitor minocycline attenuated ANG II-mediated ROS production, yet ANG II effects persisted in PVN single-minded 1-AT1a knockout mice, supporting the contribution of a non-neuronal source (likely microglia) to ANG II-driven ROS production in the PVN. Taken together, these results support functional interactions between AT1 receptors and TLR4 in mediating ANG II-dependent microglial activation and oxidative stress within the PVN. More broadly, our results support a functional interaction between the central renin-angiotensin system and innate immunity in the regulation of neurohumoral outflows from the PVN.


Asunto(s)
Angiotensina II/metabolismo , Microglía/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor Toll-Like 4/metabolismo , Angiotensina II/inmunología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Antibacterianos/farmacología , Inmunidad Innata/inmunología , Inflamación , Losartán/farmacología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/inmunología , Minociclina/farmacología , Estrés Oxidativo/genética , Estrés Oxidativo/inmunología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/inmunología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/inmunología , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/inmunología , Receptor Toll-Like 4/inmunología
19.
Brain Behav Immun ; 51: 230-239, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26336035

RESUMEN

Obesity increases risk of age-related cognitive decline and is accompanied by peripheral inflammation. Studies in rodent models of obesity have demonstrated that impaired hippocampal function correlates with microglial activation, but the possibility that neuron/microglia interactions might be perturbed in obesity has never been directly examined. The goal of this study was to determine whether high fat diet-induced obesity promotes synaptic stripping by microglia, and whether any potential changes might be reversible by a return to low-fat diet (LFD). Time course experiments revealed that hippocampal inflammatory cytokine induction and loss of synaptic protein expression were detectable after three months of HFD, therefore subsequent groups of mice were maintained on HFD for three months before being switched to LFD for an additional two months on LFD (HFD/LFD). Additional HFD mice continued to receive HFD during this period (HFD/HFD), while another group of mice were maintained on LFD throughout the experiment (LFD/LFD). Dietary obesity impaired hippocampus-dependent memory, reduced long-term potentiation (LTP), and induced expression of the activation marker major histocompatibility complex II (MHCII) in hippocampal microglia. Diet reversal only partially attenuated increases in adiposity in HFD/LFD mice, but plasticity deficits and MHCII induction were normalized to within the range of LFD/LFD mice. Microglial activation and deficits in hippocampal function were accompanied by perturbation of spatial relationships between microglial processes and synaptic puncta. Analysis of primary microglia isolated from HFD/HFD mice revealed selective increases in internalization of synaptosomes labeled with a pH-sensitive fluorophore. Taken together, these findings indicate that dietary obesity reversibly impairs hippocampal function, and that deficits may be attributable to synaptic stripping by microglia.


Asunto(s)
Encefalitis/fisiopatología , Hipocampo/fisiopatología , Potenciación a Largo Plazo , Microglía/fisiología , Obesidad/fisiopatología , Sinapsis/ultraestructura , Adiposidad , Animales , Peso Corporal , Citocinas/metabolismo , Espinas Dendríticas/patología , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Encefalitis/etiología , Encefalitis/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Obesidad/complicaciones , Obesidad/metabolismo , Sinapsis/metabolismo
20.
Exp Neurol ; 257: 114-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24805069

RESUMEN

Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1ß and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity.


Asunto(s)
Ayuno/fisiología , Inflamasomas/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/terapia , Animales , Arteriopatías Oclusivas/complicaciones , Arteria Carótida Interna , Caspasa 1/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Reperfusión , Transducción de Señal/fisiología , Accidente Cerebrovascular/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA