Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Resusc Plus ; 18: 100604, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38510376

RESUMEN

Aim: To determine whether targeting mild hypercapnia (PaCO2 7 kPa) would yield improved cerebral blood flow and metabolism compared to normocapnia (PaCO2 5 kPa) with and without targeted temperature management to 33 °C (TTM33) in a porcine post-cardiac arrest model. Methods: 39 pigs were resuscitated after 10 minutes of cardiac arrest using cardiopulmonary bypass and randomised to TTM33 or no-TTM, and hypercapnia or normocapnia. TTM33 was managed with intravasal cooling. Animals were stabilized for 30 minutes followed by a two-hour intervention period. Hemodynamic parameters were measured continuously, and neuromonitoring included intracranial pressure (ICP), pressure reactivity index, cerebral blood flow, brain-tissue pCO2 and microdialysis. Measurements are reported as proportion of baseline, and areas under the curve during the 120 min intervention period were compared. Results: Hypercapnia increased cerebral flow in both TTM33 and no-TTM groups, but also increased ICP (199% vs. 183% of baseline, p = 0.018) and reduced cerebral perfusion pressure (70% vs. 84% of baseline, p < 0.001) in no-TTM animals. Cerebral lactate (196% vs. 297% of baseline, p < 0.001), pyruvate (118% vs. 152% of baseline, p < 0.001), glycerol and lactate/pyruvate ratios were lower with hypercapnia in the TTM33 group, but only pyruvate (133% vs. 150% of baseline, p = 0.002) was lower with hypercapnia among no-TTM animals. Conclusion: In this porcine post-arrest model, hypercapnia led to increased cerebral flow both with and without hypothermia, but also increased ICP and reduced cerebral perfusion pressure in no-TTM animals. The effects of hypercapnia were different with and without TTM.(Institutional protocol number: FOTS, id 14931).

2.
J Electr Bioimpedance ; 14(1): 47-52, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38162815

RESUMEN

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter that is present at a relatively low level throughout the normal adult human brain. Abnormal GABA levels are found in people with neurodegenerative disorders such as Parkinson's disease, epilepsy, schizophrenia, depression, and others. Being able to measure the GABA concentration would be beneficial for patient groups with fluctuating GABA levels for better diagnosis and treatment. In this study, we explore the feasibility of using dielectric relaxation spectroscopy for the detection of GABA concentrations within a physiological range, with the perspective of miniaturization and use during implantation. Utilizing machine learning techniques, we were able to differentiate GABA concentrations down to 5 µm. This work investigates a novel use of dielectric relaxation spectroscopy, to assess if physiological GABA concentrations can be detected through permittivity measurements.

3.
Sensors (Basel) ; 22(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36501812

RESUMEN

A porcine model was used to investigate the feasibility of using VIS-NIR spectroscopy to differentiate between degrees of ischemia-reperfusion injury in the small intestine. Ten pigs were used in this study and four segments were created in the small intestine of each pig: (1) control, (2) full arterial and venous mesenteric occlusion for 8 h, (3) arterial and venous mesenteric occlusion for 2 h followed by reperfusion for 6 h, and (4) arterial and venous mesenteric occlusion for 4 h followed by reperfusion for 4 h. Two models were built using partial least square discriminant analysis. The first model was able to differentiate between the control, ischemic, and reperfused intestinal segments with an average accuracy of 99.2% with 10-fold cross-validation, and the second model was able to discriminate between the viable versus non-viable intestinal segments with an average accuracy of 96.0% using 10-fold cross-validation. Moreover, histopathology was used to investigate the borderline between viable and non-viable intestinal segments. The VIS-NIR spectroscopy method together with a PLS-DA model showed promising results and appears to be well-suited as a potentially real-time intraoperative method for assessing intestinal ischemia-reperfusion injury, due to its easy-to-use and non-invasive nature.


Asunto(s)
Daño por Reperfusión , Espectroscopía Infrarroja Corta , Porcinos , Animales , Daño por Reperfusión/diagnóstico , Daño por Reperfusión/patología , Intestino Delgado/patología , Isquemia/patología , Técnicas Histológicas
4.
Sci Rep ; 12(1): 11183, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778457

RESUMEN

There is a shortage of donor livers and patients consequently die on waiting lists worldwide. Livers are discarded if they are clinically judged to have a high risk of non-function following transplantation. With the aim of extending the pool of available donor livers, we assessed the condition of porcine livers by monitoring the microwave dielectric properties. A total of 21 livers were divided into three groups: control with no injury (CON), biliary injury by hepatic artery occlusion (AHEP), and overall hepatic injury by static cold storage (SCS). All were monitored for four hours in vivo, followed by ex vivo plurithermic machine perfusion (PMP). Permittivity data was modeled with a two-pole Cole-Cole equation, and dielectric properties from one-hour intervals were analyzed during in vivo and normothermic machine perfusion (NMP). A clear increasing trend in the conductivity was observed in vivo in the AHEP livers compared to the control livers. After four hours of NMP, separations in the conductivity were observed between the three groups. Our results indicate that dielectric relaxation spectroscopy (DRS) can be used to detect and differentiate liver injuries, opening for a standardized and reliable point of evaluation for livers prior to transplantation.


Asunto(s)
Trasplante de Hígado , Daño por Reperfusión , Animales , Hígado/irrigación sanguínea , Trasplante de Hígado/métodos , Preservación de Órganos/métodos , Perfusión/métodos , Daño por Reperfusión/diagnóstico , Porcinos
5.
Sci Rep ; 12(1): 3279, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228559

RESUMEN

Intestinal ischemia is a serious condition where the surgeon often has to make important but difficult decisions regarding resections and resection margins. Previous studies have shown that 3 h (hours) of warm full ischemia of the small bowel followed by reperfusion appears to be the upper limit for viability in the porcine mesenteric ischemia model. However, the critical transition between 3 to 4 h of ischemic injury can be nearly impossible to distinguish intraoperatively based on standard clinical methods. In this study, permittivity data from porcine intestine was used to analyze the characteristics of various degrees of ischemia/reperfusion injury. Our results show that dielectric relaxation spectroscopy can be used to assess intestinal viability. The dielectric constant and conductivity showed clear differences between healthy, ischemic and reperfused intestinal segments. This indicates that dielectric parameters can be used to characterize different intestinal conditions. In addition, machine learning models were employed to classify viable and non-viable segments based on frequency dependent dielectric properties of the intestinal tissue, providing a method for fast and accurate intraoperative surgical decision-making. An average classification accuracy of 98.7% was obtained using only permittivity data measured during ischemia, and 96.2% was obtained with data measured during reperfusion. The proposed approach allows the surgeon to get accurate evaluation from the trained machine learning model by performing one single measurement on an intestinal segment where the viability state is questionable.


Asunto(s)
Aprendizaje Profundo , Daño por Reperfusión , Animales , Espectroscopía Dieléctrica , Intestino Delgado , Intestinos , Isquemia/diagnóstico , Daño por Reperfusión/diagnóstico , Porcinos
6.
PLoS One ; 17(2): e0262848, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35143517

RESUMEN

BACKGROUND: Pancreatic transplantation is associated with a high rate of early postoperative graft thrombosis. If a thrombosis is detected in time, a potentially graft-saving intervention can be initiated. Current postoperative monitoring lacks tools for early detection of ischemia. The aim of this study was to investigate if microdialysis and tissue pCO2 sensors detect pancreatic ischemia and whether intraparenchymal and organ surface measurements are comparable. METHODS: In 8 anaesthetized pigs, pairs of lactate monitoring microdialysis catheters and tissue pCO2 sensors were simultaneously inserted into the parenchyma and attached to the surface of the pancreas. Ischemia was induced by sequential arterial and venous occlusions of 45-minute duration, with two-hour reperfusion after each occlusion. Microdialysate was analyzed every 15 minutes. Tissue pCO2 was measured continuously. We investigated how surface and parenchymal measurements correlated and the capability of lactate and pCO2 to discriminate ischemic from non-ischemic periods. RESULTS: Ischemia was successfully induced by arterial occlusion in 8 animals and by venous occlusion in 5. During all ischemic episodes, lactate increased with a fold change of 3.2-9.5 (range) in the parenchyma and 1.7-7.6 on the surface. Tissue pCO2 increased with a fold change of 1.6-3.5 in the parenchyma and 1.3-3.0 on the surface. Systemic lactate and pCO2 remained unchanged. The area under curve (AUC) for lactate was 0.97 (95% confidence interval (CI) 0.93-1.00) for parenchymal and 0.90 (0.83-0.97) for surface (p<0.001 for both). For pCO2 the AUC was 0.93 (0.89-0.96) for parenchymal and 0.85 (0.81-0.90) for surface (p<0.001 for both). The median correlation coefficients between parenchyma and surface were 0.90 (interquartile range (IQR) 0.77-0.95) for lactate and 0.93 (0.89-0.97) for pCO2. CONCLUSIONS: Local organ monitoring with microdialysis and tissue pCO2 sensors detect pancreatic ischemia with adequate correlation between surface and parenchymal measurements. Both techniques and locations seem feasible for further development of clinical pancreas monitoring.


Asunto(s)
Dióxido de Carbono/análisis , Isquemia/diagnóstico , Microdiálisis , Páncreas/metabolismo , Animales , Área Bajo la Curva , Modelos Animales de Enfermedad , Ácido Láctico/metabolismo , Tejido Parenquimatoso/metabolismo , Curva ROC , Porcinos
7.
ERJ Open Res ; 7(4)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34877350

RESUMEN

BACKGROUND: Oxygen-delivering modalities like humidified high-flow nasal cannula (HFNC) and noninvasive positive-pressure ventilation (NIV) are suspected of generating aerosols that may contribute to transmission of disease such as coronavirus disease 2019. We sought to assess if these modalities lead to increased aerosol dispersal compared to the use of non-humidified low-flow nasal cannula oxygen treatment (LFNC). METHODS: Aerosol dispersal from 20 healthy volunteers using HFNC, LFNC and NIV oxygen treatment was measured in a controlled chamber. We investigated effects related to coughing and using a surgical face mask in combination with the oxygen delivering modalities. An aerodynamic particle sizer measured aerosol particles (APS3321, 0.3-20 µm) directly in front of the subjects, while a mesh of smaller particle sensors (SPS30, 0.3-10 µm) was distributed in the test chamber. RESULTS: Non-productive coughing led to significant increases in particle dispersal close to the face when using LFNC and HFNC but not when using NIV. HFNC or NIV did not lead to a statistically significant increase in aerosol dispersal compared to LFNC. With non-productive cough in a room without air changes, there was a significant drop in particle levels between 100 cm and 180 cm from the subjects. CONCLUSIONS: Our results indicate that using HFNC and NIV does not lead to increased aerosol dispersal compared to low-flow oxygen treatment, except in rare cases. For a subject with non-productive cough, NIV with double-limb circuit and non-vented mask may be a favourable choice to reduce the risk for aerosol spread.

8.
J Electr Bioimpedance ; 12(1): 82-88, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34966469

RESUMEN

Electrical impedance spectroscopy is a well-established tool for monitoring changes in the electrical properties of tissue. Most tissue and organ types have been investigated in various studies. As for the small intestine, there are several published studies conducted on pig and rat models. This study investigates the changes in passive electrical properties of the complete wall of the human intestine non-invasively during ischemia. We aim to use the passive electrical properties to assess intestinal viability. The bioimpedance measurements were performed using a two-electrode set-up with a Solartron 1260 Impedance/gain-phase analyser. The small intestinal samples were resected from patients who underwent pancreaticoduodenectomy. Impedance measurements were conducted following resection by placing the electrodes on the surface of the intestine. A voltage was applied across the intestinal sample and the measured electrical impedance was obtained in the ZPlot software. Impedance data were further fitted into a Cole model to obtain the Cole parameters. The Py value was calculated from the extracted Cole parameters and used to assess the cell membrane integrity, thus evaluate the intestinal viability. Eight small intestinal segments from different patients were used in this study and impedance measurements were performed once an hour for a ten-hour period. One hour after resection, the impedance decreased, then increased the next two hours, before decreasing until the end of the experiment. For all the intestinal segments, the Py values first increased and reached a plateau which lasted for 1 - 2 hours, before it decreased irreversibly. The time interval where Py value reached the maximum is consistent with reported viable/non-viable limits from histological analysis.

9.
Sensors (Basel) ; 21(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641009

RESUMEN

Acute intestinal ischemia is a life-threatening condition. The current gold standard, with evaluation based on visual and tactile sensation, has low specificity. In this study, we explore the feasibility of using machine learning models on images of the intestine, to assess small intestinal viability. A digital microscope was used to acquire images of the jejunum in 10 pigs. Ischemic segments were created by local clamping (approximately 30 cm in width) of small arteries and veins in the mesentery and reperfusion was initiated by releasing the clamps. A series of images were acquired once an hour on the surface of each of the segments. The convolutional neural network (CNN) has previously been used to classify medical images, while knowledge is lacking whether CNNs have potential to classify ischemia-reperfusion injury on the small intestine. We compared how different deep learning models perform for this task. Moreover, the Shapley additive explanations (SHAP) method within explainable artificial intelligence (AI) was used to identify features that the model utilizes as important in classification of different ischemic injury degrees. To be able to assess to what extent we can trust our deep learning model decisions is critical in a clinical setting. A probabilistic model Bayesian CNN was implemented to estimate the model uncertainty which provides a confidence measure of our model decisions.


Asunto(s)
Inteligencia Artificial , Daño por Reperfusión , Animales , Teorema de Bayes , Intestino Delgado , Redes Neurales de la Computación , Proyectos Piloto , Daño por Reperfusión/diagnóstico , Porcinos
10.
Sci Rep ; 11(1): 18082, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508109

RESUMEN

The GABA molecule is the major inhibitory neurotransmitter in the mammalian central nervous system. Through binding to post-synaptic neurons, GABA reduces the neuronal excitability by hyperpolarization. Correct binding between the GABA molecules and its receptors relies on molecular recognition. Earlier studies suggest that recognition is determined by the geometries of the molecule and its receptor. We employed dielectric relaxation spectroscopy (DRS) to study the conformation and dielectric properties of the GABA molecule under physiologically relevant laboratory conditions. The dielectric properties of GABA investigated have given us new insights about the GABA molecule, such as how they interact with each other and with water molecules at different temperatures (22°C and 37.5°C). Higher temperature leads to lower viscosity, thus lower relaxation time. The change in the GABA relaxation time due to concentration change is more associated with the solution viscosity than with the GABA dipole moment. A resonance behavior was observed with high GABA concentrations at physiological temperature, where there might be a phase transition at a certain temperature for a given GABA concentration that leads to a sudden change of the dielectric properties.

11.
Resuscitation ; 167: 251-260, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34166747

RESUMEN

AIM: To determine whether targeting a mean arterial pressure of 90 mmHg (MAP90) would yield improved cerebral blood flow and less ischaemia compared to MAP 60 mmHg (MAP60) with and without targeted temperature management at 33 °C (TTM33) in a porcine post-cardiac arrest model. METHODS: After 10 min of cardiac arrest, 41 swine of either sex were resuscitated until return of spontaneous circulation (ROSC). They were randomised to TTM33 or no-TTM, and MAP60 or MAP90; yielding four groups. Temperatures were managed with intravasal cooling and blood pressure targets with noradrenaline, vasopressin and nitroprusside, as appropriate. After 30 min of stabilisation, animals were observed for two hours. Cerebral perfusion pressure (CPP), cerebral blood flow (CBF), pressure reactivity index (PRx), brain tissue pCO2 (PbtCO2) and tissue intermediary metabolites were measured continuously and compared using mixed models. RESULTS: Animals randomised to MAP90 had higher CPP (p < 0.001 for both no-TTM and TTM33) and CBF (no-TTM, p < 0.03; TH, p < 0.001) compared to MAP60 during the 150 min observational period post-ROSC. We also observed higher lactate and pyruvate in MAP60 irrespective of temperature, but no significant differences in PbtCO2 and lactate/pyruvate-ratio. We found lower PRx (indicating more intact autoregulation) in MAP90 vs. MAP60 (no-TTM, p = 0.04; TTM33, p = 0.03). CONCLUSION: In this porcine cardiac arrest model, targeting MAP90 led to better cerebral perfusion and more intact autoregulation, but without clear differences in ischaemic markers, compared to MAP60. INSTITUTIONAL PROTOCOL NUMBER: FOTS, id 8442.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Hipotermia Inducida , Animales , Presión Arterial , Circulación Cerebrovascular , Paro Cardíaco/terapia , Perfusión , Porcinos
12.
Biomed Pharmacother ; 137: 111392, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33761609

RESUMEN

Inflammation and oxidative stress play a significant role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Ethyl pyruvate (EP) is a novel anti-inflammatory agent and a potent reactive oxygen species (ROS) scavenger. Therefore, EP supplemented in drinking water may alleviate experimental NASH in this study (even though 0.3% of EP cannot attenuate the simple non-aggressive fatty liver). The methionine-choline-deficient (MCD) diet was given to the C57BL/6 male mice for 3 weeks to induce NASH. The NASH animals were randomized into 3 treatment groups: animals in the MCD alone group were treated with normal drinking water alone; animals in the delayed EP group were given 3% (v/v) of EP supplemented in normal drinking water, the treatment started 10 days after MCD diet feeding; animals in the early EP therapy group were treated the same as the delayed EP group except that EP treatment started the same day when MCD diet was given; the control mice were fed with normal chow and treated with normal drinking water (n = 10 for each group). Compared to MCD group with normal drinking water, early EP treatment significantly decreased serum ALT and improved NASH histopathology; delayed EP therapy only attenuated NASH in 50% (5/10) of the animals. The beneficial effects were associated with decreased hepatic TNF-a and IL-6 mRNA expression on early 5 days, inhibited NF-kB activation, reduced liver tissue malondialdehyde levels, and decreased intestinal bacterial translocation (BT). In conclusion: EP supplemented in drinking water attenuates experimental NASH.


Asunto(s)
Antioxidantes/uso terapéutico , Agua Potable , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Piruvatos/uso terapéutico , Animales , Antioxidantes/administración & dosificación , Traslocación Bacteriana , Dieta , Interleucina-6/biosíntesis , Hígado/metabolismo , Hígado/patología , Pruebas de Función Hepática , Masculino , Malondialdehído/metabolismo , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , FN-kappa B/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Piruvatos/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo
13.
J Electr Bioimpedance ; 10(1): 24-33, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33584879

RESUMEN

The relation between a biological process and the changes in passive electrical properties of the tissue is often non-linear, in which developing prediction models based on bioimpedance spectra is not trivial. Relevant information on tissue status may also lie in characteristic developments in the bioimpedance spectra over time, often neglected by conventional methods. The aim of this study was to explore possibilities in machine learning methods for time series of bioimpedance spectra, where we used organ ischemia as an example. Based on published data on the development of the bioimpedance spectrum during liver ischemia, a simulation model was made and used to generate sets of synthetic data with different levels of organ-to-organ variation, measurement noise and drift. Three types of artificial neural networks were employed in learning to predict the ischemic duration, based on the simulated datasets. The simulated prediction performance was very dependent on the amount of training examples, the organ-to-organ variation and the selection of input variables from the bioimpedance spectrum. The performance was also affected by noise and drift in the measurement, but a recurrent neural network with long short-term memory units could obtain good predictions even on noisy and drifting measurements. This approach may be relevant for further exploration on several applications of bioimpedance having the purpose of predicting a biological state based on spectra measured over time.

14.
Physiol Meas ; 39(10): 105011, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30207981

RESUMEN

OBJECTIVE: Evaluation of intestinal viability is essential in surgical decision-making in patients with acute intestinal ischemia. There has been no substantial change in the mortality rate (30%-93%) of patients with acute mesenteric ischemia (AMI) since the 1980s. As the accuracy from the first laparotomy alone is 50%, the gold standard is a second-look laparotomy, increasing the accuracy to 87%-89%. This study investigates the use of machine learning to classify intestinal viability and histological grading in pig jejunum, based on multivariate time-series of bioimpedance sensor data. APPROACH: We have previously used a bioimpedance sensor system to acquire electrical parameters from perfused, ischemic and reperfused pig jejunum (7 + 15 pigs) over 1-16 h of ischemia and 1-8 h of reperfusion following selected durations of ischemia. In this study we compare the accuracy of using end-point bioimpedance measurements with a feedforward neural network (FNN), versus the accuracy when using a recurrent neural network with long short-term memory units (LSTM-RNN) with bioimpedance data history over different periods of time. MAIN RESULTS: Accuracies in the range of what has been reported clinically can be achieved using FNN's on a single bioimpedance measurement, and higher accuracies can be achieved when employing LSTM-RNN on a sequence of data history. SIGNIFICANCE: Intraoperative bioimpedance measurements on intestine of suspect viability combined with machine learning can increase the accuracy of intraoperative assessment of intestinal viability. Increased accuracy in intraoperative assessment of intestinal viability has the potential to reduce the high mortality and morbidity rate of the patients.


Asunto(s)
Enfermedades Intestinales/diagnóstico , Isquemia/diagnóstico , Isquemia/fisiopatología , Yeyuno/fisiopatología , Yeyuno/cirugía , Aprendizaje Automático , Monitoreo Intraoperatorio/métodos , Animales , Toma de Decisiones Clínicas/métodos , Impedancia Eléctrica , Femenino , Interpretación de Imagen Asistida por Computador/métodos , Enfermedades Intestinales/patología , Enfermedades Intestinales/fisiopatología , Enfermedades Intestinales/cirugía , Isquemia/patología , Isquemia/cirugía , Yeyuno/patología , Masculino , Pronóstico , Sus scrofa
15.
World J Gastroenterol ; 24(18): 2009-2023, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760544

RESUMEN

AIM: To investigate viability assessment of segmental small bowel ischemia/reperfusion in a porcine model. METHODS: In 15 pigs, five or six 30-cm segments of jejunum were simultaneously made ischemic by clamping the mesenteric arteries and veins for 1 to 16 h. Reperfusion was initiated after different intervals of ischemia (1-8 h) and subsequently monitored for 5-15 h. The intestinal segments were regularly photographed and assessed visually and by palpation. Intraluminal lactate and glycerol concentrations were measured by microdialysis, and samples were collected for light microscopy and transmission electron microscopy. The histological changes were described and graded. RESULTS: Using light microscopy, the jejunum was considered as viable until 6 h of ischemia, while with transmission electron microscopy the ischemic muscularis propria was considered viable until 5 h of ischemia. However, following ≥ 1 h of reperfusion, only segments that had been ischemic for ≤ 3 h appeared viable, suggesting a possible upper limit for viability in the porcine mesenteric occlusion model. Although intraluminal microdialysis allowed us to closely monitor the onset and duration of ischemia and the onset of reperfusion, we were unable to find sufficient level of association between tissue viability and metabolic markers to conclude that microdialysis is clinically relevant for viability assessment. Evaluation of color and motility appears to be poor indicators of intestinal viability. CONCLUSION: Three hours of total ischemia of the small bowel followed by reperfusion appears to be the upper limit for viability in this porcine mesenteric ischemia model.


Asunto(s)
Mucosa Intestinal/patología , Yeyuno/patología , Daño por Reperfusión/patología , Supervivencia Tisular , Animales , Color , Femenino , Motilidad Gastrointestinal , Mucosa Intestinal/irrigación sanguínea , Mucosa Intestinal/diagnóstico por imagen , Mucosa Intestinal/ultraestructura , Yeyuno/irrigación sanguínea , Yeyuno/diagnóstico por imagen , Yeyuno/ultraestructura , Masculino , Oclusión Vascular Mesentérica/complicaciones , Microdiálisis , Microscopía Electrónica de Transmisión , Fotograbar , Daño por Reperfusión/diagnóstico por imagen , Daño por Reperfusión/etiología , Sus scrofa , Porcinos , Factores de Tiempo
16.
Physiol Meas ; 39(2): 025001, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29303488

RESUMEN

OBJECTIVE: Trans-intestinal bioimpedance measurements have previously been used to investigate changes in electrical parameters during 6 h of ischemia in the small intestine. Knowledge is lacking regarding the time course of trans-intestinal bioimpedance parameters during reperfusion. As reperfusion is an important part in the clinical treatment of intestinal ischemia, we need to know how it affects the bioimpedance measurements. APPROACH: We performed bioimpedance measurements, using a two-electrode setup on selected segments of the jejunum in 15 pigs. A controlled voltage signal was applied while measuring the resulting current. In each pig, five or six 30 cm segments of the jejunum were made ischemic by clamping the mesenteric arteries and veins creating segments with ischemia from 1-16 h duration. Reperfusion was initiated at selected time intervals of ischemia, and measured for 5-15 h afterwards. MAIN RESULTS: The tan δ parameter (loss tangent) was different (p < 0.016) comparing ischemic and control tissue for the duration of the experiment (16 h). Comparing the control tissue 30 cm from the ischemic area with the control tissue 60 cm from the ischemic tissue, we found that the mean tan δ amplitude in the frequency range (3900-6300 Hz) was significantly higher (p < 0.036) in the proximal control after 10 h of experiment duration. After reperfusion, the time development of tanδm (loss tangent maximum over a frequency range) amplitude and frequency overlapped and periodically increased above the tanδm in the ischemic intestine. Dependent on the ischemic duration pre-reperfusion, the initial increase in tan δ stabilizes or increases drastically over time, compared to the tan δ amplitude of the ischemic tissue. SIGNIFICANCE: As during ischemia, the electrical parameters during reperfusion also follow a characteristic time-course, depending on the ischemic exposure before pre-reperfusion. The temporal changes in electrical parameters during small intestinal ischemia followed by reperfusion provides important information for assessment of tissue injury.


Asunto(s)
Isquemia/patología , Isquemia/fisiopatología , Yeyuno/irrigación sanguínea , Reperfusión , Animales , Impedancia Eléctrica , Femenino , Yeyuno/patología , Masculino , Porcinos , Supervivencia Tisular
17.
Physiol Meas ; 38(5): 715-728, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28319030

RESUMEN

OBJECTIVE: Bioimpedance has been used to investigate changes in electrical parameters during ischemia in various tissues. The small intestine is a multi-layered structure, with several distinct tissue types, and ischemia related changes occur at different times in the different intestinal layers. When investigating how the electrical properties in the small intestine is affected by ischemia, some researchers have used ex vivo models while others have used in vivo models. In this study, we compare ischemic time development of electrical parameters in ischemic in vivo versus ex vivo small intestine. APPROACH: Measurements were performed using a two-electrode setup, with a Solartron 1260/1294 impedance gain-phase analyser. Electrodes were placed on the surface of ischemic pig jejunum, applying a voltage and measuring the resulting electrical admittance. In each pig, 4 segments of the jejunum were made ischemic by clamping the mesenteric arteries and veins, resulting in a 30 cm central zone of warm ischemia and edema. The in vivo part of the experiment lasted 10 h, after which 3 pieces of perfused small intestine were resected, stored in Ringer-acetat at 38 °C, and measured during a 10 h ex vivo experiment. Main results and significance: We found significant differences (p < 0.0001) between the values of electric parameters when comparing the in vivo and ex vivo measurements as a function of ischemic time development. We also observed some similarities in the trends. In vivo, we measured an overall decrease in impedance during the duration of the experiment, probably as a result from the formation of edema. Ex vivo, the low frequency impedance increased initially for approximately 3 h before starting to decrease.


Asunto(s)
Intestino Delgado/irrigación sanguínea , Isquemia/patología , Animales , Impedancia Eléctrica , Electrodos , Femenino , Masculino , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA