Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Genet Genomic Med ; 11(7): e2167, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36967109

RESUMEN

BACKGROUND: The majority of genetic epilepsies remain unsolved in terms of specific genotype. Phenotype-based genomic analyses have shown potential to strengthen genomic analysis in various ways, including improving analytical efficacy. METHODS: We have tested a standardised phenotyping method termed 'Phenomodels' for integrating deep-phenotyping information with our in-house developed clinical whole exome/genome sequencing analytical pipeline. Phenomodels includes a user-friendly epilepsy phenotyping template and an objective measure for selecting which template terms to include in individualised Human Phenotype Ontology (HPO) gene panels. In a pilot study of 38 previously solved cases of developmental and epileptic encephalopathies, we compared the sensitivity and specificity of the individualised HPO gene panels with the clinical epilepsy gene panel. RESULTS: The Phenomodels template showed high sensitivity for capturing relevant phenotypic information, where 37/38 individuals' HPO gene panels included the causative gene. The HPO gene panels also had far fewer variants to assess than the epilepsy gene panel. CONCLUSION: We have demonstrated a viable approach for incorporating standardised phenotype information into clinical genomic analyses, which may enable more efficient analysis.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Humanos , Exoma , Proyectos Piloto , Epilepsia Generalizada/genética , Fenotipo , Epilepsia/genética
3.
Hum Mutat ; 43(6): 708-716, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35192731

RESUMEN

The amount of data available from genomic medicine has revolutionized the approach to identify the determinants underlying many rare diseases. The task of confirming a genotype-phenotype causality for a patient affected with a rare genetic disease is often challenging. In this context, the establishment of the Matchmaker Exchange (MME) network has assumed a pivotal role in bridging heterogeneous patient information stored on different medical and research servers. MME has made it possible to solve rare disease cases by "matching" the genotypic and phenotypic characteristics of a patient of interest with patient data available at other clinical facilities participating in the network. Here, we present PatientMatcher (https://github.com/Clinical-Genomics/patientMatcher), an open-source Python and MongoDB-based software solution developed by Clinical Genomics facility at the Science for Life Laboratory in Stockholm. PatientMatcher is designed as a standalone MME server, but can easily communicate via REST API with external applications managing genetic analyses and patient data. The MME node is being implemented in clinical routine in collaboration with the Genomic Medicine Center Karolinska at the Karolinska University Hospital. PatientMatcher is written to implement the MME API and provides several customizable settings, including a custom-fit similarity score algorithm and adjustable matching results notifications.


Asunto(s)
Enfermedades Raras , Enfermedades no Diagnosticadas , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Difusión de la Información/métodos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Programas Informáticos
4.
J Hum Genet ; 66(10): 995-1008, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33875766

RESUMEN

Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Ciliopatías/genética , Predisposición Genética a la Enfermedad , Isoformas de Proteínas/genética , Adulto , Anciano , Enfermedades del Desarrollo Óseo/epidemiología , Enfermedades del Desarrollo Óseo/patología , Ciliopatías/epidemiología , Ciliopatías/patología , Dineínas Citoplasmáticas/genética , Proteínas del Citoesqueleto/genética , Femenino , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Secuenciación Completa del Genoma
5.
Neurol Genet ; 7(2): e566, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33732874

RESUMEN

OBJECTIVE: To investigate the pathogenicity of a novel MT-ND3 mutation identified in a patient with adult-onset sensorimotor axonal polyneuropathy and report the clinical, morphologic, and biochemical findings. METHODS: Clinical assessments and morphologic and biochemical investigations of skeletal muscle and cultured myoblasts from the patient were performed. Whole-genome sequencing (WGS) of DNA from skeletal muscle and Sanger sequencing of mitochondrial DNA (mtDNA) from both skeletal muscle and cultured myoblasts were performed. Heteroplasmic levels of mutated mtDNA in different tissues were quantified by last-cycle hot PCR. RESULTS: Muscle showed ragged red fibers, paracrystalline inclusions, a significant reduction in complex I (CI) respiratory chain (RC) activity, and decreased adenosine triphosphate (ATP) production for all substrates used by CI. Sanger sequencing of DNA from skeletal muscle detected a unique previously unreported heteroplasmic mutation in mtDNA encoded MT-ND3, coding for a subunit in CI. WGS confirmed the mtDNA mutation but did not detect any other mutation explaining the disease. Cultured myoblasts, however, did not carry the mutation, and RC activity measurements in myoblasts were normal. CONCLUSIONS: We report a case with adult-onset sensorimotor axonal polyneuropathy caused by a novel mtDNA mutation in MT-ND3. Loss of heteroplasmy in blood, cultured fibroblasts and myoblasts from the patient, and normal measurement of RC activity of the myoblasts support pathogenicity of the mutation. These findings highlight the importance of mitochondrial investigations in patients presenting with seemingly idiopathic polyneuropathy, especially if muscle also is affected.

6.
Genome Med ; 13(1): 40, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33726816

RESUMEN

BACKGROUND: We report the findings from 4437 individuals (3219 patients and 1218 relatives) who have been analyzed by whole genome sequencing (WGS) at the Genomic Medicine Center Karolinska-Rare Diseases (GMCK-RD) since mid-2015. GMCK-RD represents a long-term collaborative initiative between Karolinska University Hospital and Science for Life Laboratory to establish advanced, genomics-based diagnostics in the Stockholm healthcare setting. METHODS: Our analysis covers detection and interpretation of SNVs, INDELs, uniparental disomy, CNVs, balanced structural variants, and short tandem repeat expansions. Visualization of results for clinical interpretation is carried out in Scout-a custom-developed decision support system. Results from both singleton (84%) and trio/family (16%) analyses are reported. Variant interpretation is done by 15 expert teams at the hospital involving staff from three clinics. For patients with complex phenotypes, data is shared between the teams. RESULTS: Overall, 40% of the patients received a molecular diagnosis ranging from 19 to 54% for specific disease groups. There was heterogeneity regarding causative genes (n = 754) with some of the most common ones being COL2A1 (n = 12; skeletal dysplasia), SCN1A (n = 8; epilepsy), and TNFRSF13B (n = 4; inborn errors of immunity). Some causative variants were recurrent, including previously known founder mutations, some novel mutations, and recurrent de novo mutations. Overall, GMCK-RD has resulted in a large number of patients receiving specific molecular diagnoses. Furthermore, negative cases have been included in research studies that have resulted in the discovery of 17 published, novel disease-causing genes. To facilitate the discovery of new disease genes, GMCK-RD has joined international data sharing initiatives, including ClinVar, UDNI, Beacon, and MatchMaker Exchange. CONCLUSIONS: Clinical WGS at GMCK-RD has provided molecular diagnoses to over 1200 individuals with a broad range of rare diseases. Consolidation and spread of this clinical-academic partnership will enable large-scale national collaboration.


Asunto(s)
Atención a la Salud , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Heterogeneidad Genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Difusión de la Información , Patrón de Herencia/genética , Repeticiones de Microsatélite/genética , Mutación/genética , Suecia , Disomía Uniparental/genética
7.
Hum Mutat ; 42(4): 378-384, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33502047

RESUMEN

Mutations in structural subunits and assembly factors of complex I of the oxidative phosphorylation system constitute the most common cause of mitochondrial respiratory chain defects. Such mutations can present a wide range of clinical manifestations, varying from mild deficiencies to severe, lethal disorders. We describe a patient presenting intrauterine growth restriction and anemia, which displayed postpartum hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and a severe complex I defect with fatal outcome. Whole genome sequencing revealed an intronic biallelic mutation in the NDUFB7 gene (c.113-10C>G) and splicing pattern alterations in NDUFB7 messenger RNA were confirmed by RNA Sequencing. The detected variant resulted in a significant reduction of the NDUFB7 protein and reduced complex I activity. Complementation studies with expression of wild-type NDUFB7 in patient fibroblasts normalized complex I function. Here we report a case with a primary complex I defect due to a homozygous mutation in an intron region of the NDUFB7 gene.


Asunto(s)
Acidosis Láctica , Cardiomiopatía Hipertrófica , Enfermedades Mitocondriales , NADH NADPH Oxidorreductasas/genética , Acidosis Láctica/genética , Cardiomiopatía Hipertrófica/genética , Complejo I de Transporte de Electrón/genética , Humanos , Enfermedades Mitocondriales/genética , Mutación
8.
J Pediatr ; 228: 240-251.e2, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32827528

RESUMEN

OBJECTIVES: To evaluate the clinical symptoms and biochemical findings and establish the genetic etiology in a cohort of pediatric patients with combined deficiencies of the mitochondrial respiratory chain complexes. STUDY DESIGN: Clinical and biochemical data were collected from 55 children. All patients were subjected to sequence analysis of the entire mitochondrial genome, except when the causative mutations had been identified based on the clinical picture. Whole exome sequencing/whole genome sequencing (WES/WGS) was performed in 32 patients. RESULTS: Onset of disease was generally early in life (median age, 6 weeks). The most common symptoms were muscle weakness, hypotonia, and developmental delay/intellectual disability. Nonneurologic symptoms were frequent. Disease causing mutations were found in 20 different nuclear genes, and 7 patients had mutations in mitochondrial DNA. Causative variants were found in 18 of the 32 patients subjected to WES/WGS. Interestingly, many patients had low levels of coenzyme Q10 in muscle, irrespective of genetic cause. CONCLUSIONS: Children with combined enzyme defects display a diversity of clinical symptoms with varying age of presentation. We established the genetic diagnosis in 35 of the 55 patients (64%). The high diagnostic yield was achieved by the introduction of massive parallel sequencing, which also revealed novel genes and enabled elucidation of new disease mechanisms.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Metabólicas/genética , Enfermedades Mitocondriales/genética , Mutación , Ubiquinona/análogos & derivados , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Humanos , Lactante , Recién Nacido , Enfermedades Metabólicas/enzimología , Enfermedades Mitocondriales/enzimología , Ubiquinona/sangre , Secuenciación del Exoma , Adulto Joven
9.
Epilepsia ; 61(11): 2486-2499, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32964447

RESUMEN

OBJECTIVE: Population-based data on epilepsy syndromes and etiologies in early onset epilepsy are scarce. The use of next-generation sequencing (NGS) has hitherto not been reported in this context. The aim of this study is to describe children with epilepsy onset before 2 years of age, and to explore to what degree whole exome and whole genome sequencing (WES/WGS) can help reveal a molecular genetic diagnosis. METHODS: Children presenting with a first unprovoked epileptic seizure before age 2 years and registered in the Stockholm Incidence Registry of Epilepsy (SIRE) between September 1, 2001 and December 31, 2006, were retrieved and their medical records up to age 7 years reviewed. Children who met the epilepsy criteria were included in the study cohort. WES/WGS was offered in cases of suspected genetic etiology regardless of whether a structural or metabolic diagnosis had been established. RESULTS: One hundred sixteen children were included, of which 88 had seizure onset during the first year of life and 28 during the second, corresponding to incidences of 139 and 42/100 000 person-years, respectively. An epilepsy syndrome could be diagnosed in 54% of cases, corresponding to a birth prevalence of 1/1100. Structural etiology was revealed in 34% of cases, a genetic cause in 20%, and altogether etiology was known in 65% of children. The highest diagnostic yield was seen in magnetic resonance imaging (MRI) with 65% revealing an etiology. WES/WGS was performed in 26/116 cases (22%), with a diagnostic yield of 58%. SIGNIFICANCE: Epilepsy syndromes can be diagnosed and etiologies revealed in a majority of early onset cases. NGS can identify a molecular diagnosis in a substantial number of children, and should be included in the work-up, especially in cases of epileptic encephalopathy, cerebral malformation, or metabolic disease without molecular diagnosis. A genetic diagnosis is essential to genetic counselling, prenatal diagnostics, and precision therapy.


Asunto(s)
Epilepsia/epidemiología , Epilepsia/genética , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Vigilancia de la Población , Niño , Preescolar , Estudios de Cohortes , Epilepsia/diagnóstico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estudios Prospectivos , Sistema de Registros , Suecia/epidemiología , Síndrome
10.
Neurol Genet ; 6(4): e478, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32754646

RESUMEN

OBJECTIVE: To describe the phenotype in 2 sisters with a rare constellation of neurologic symptoms and secretory impairments and to identify the etiology by the use of whole-genome sequencing (WGS). METHODS: After an extensive workup failed to reveal the cause of disease, in a girl with a previously not reported phenotype, WGS of the proband, her diseased older sister, an older healthy brother, and their parents was performed, and potentially pathogenic variants were analyzed. RESULTS: The proband and her older sister both presented with neonatal Staphylococcus aureus parotitis, apneas, disappearance of the Moro reflex, and hypotonia. The proband survived. Her brain MRI showed white matter and basal ganglia abnormalities, and CSF damage biomarkers were increased. At age 8 years, she exhibits a constellation of symptoms including severe neurodevelopmental disorder, hearing impairment, gastrointestinal problems, and a striking lack of tear fluid, saliva, and sweat. Her respiratory mucosa is dry with potentially life-threatening mucus plugging. Through WGS, 2 loss-of-function variants in SLC12A2 were identified that follow an autosomal recessive inheritance pattern. CONCLUSIONS: Taken together with a single previously reported case and the close resemblance to the phenotypes of corresponding mouse models, our study firmly establishes biallelic variants in SLC12A2 as causing human disease and adds data regarding the neurologic phenotype.

11.
BMC Bioinformatics ; 21(1): 273, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611382

RESUMEN

BACKGROUND: Exome and genome sequencing is becoming the method of choice for rare disease diagnostics. One of the key challenges remaining is distinguishing the disease causing variants from the benign background variation. After analysis and annotation of the sequencing data there are typically thousands of candidate variants requiring further investigation. One of the most effective and least biased ways to reduce this number is to assess the rarity of a variant in any population. Currently, there are a number of reliable sources of information for major population frequencies when considering single nucleotide variants (SNVs) and small insertion and deletions (INDELs), with gnomAD as the most prominent public resource available. However, local variation or frequencies in sub-populations may be underrepresented in these public resources. In contrast, for structural variation (SV), the background frequency in the general population is more or less unknown mostly due to challenges in calling SVs in a consistent way. Keeping track of local variation is one way to overcome these problems and significantly reduce the number of potential disease causing variants retained for manual inspection, both for SNVs and SVs. RESULTS: Here, we present loqusdb, a tool to solve the challenge of keeping track of any type of variant observations from genome sequencing data. Loqusdb was designed to handle a large flow of samples and unlike other solutions, samples can be added continuously to the database without rebuilding it, facilitating improvements and additions. We assessed the added value of a local observations database using 98 samples annotated with information from a background of 888 unrelated individuals. CONCLUSIONS: We show both how powerful SV analysis can be when filtering for population frequencies and how the number of apparently rare SNVs/INDELs can be reduced by adding local population information even after annotating the data with other large frequency databases, such as gnomAD. In conclusion, we show that a local frequency database is an attractive, and a necessary addition to the publicly available databases that facilitate the analysis of exome and genome data in a clinical setting.


Asunto(s)
Variación Genética , Interfaz Usuario-Computador , Bases de Datos Genéticas , Humanos , Mutación INDEL , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Polimorfismo de Nucleótido Simple
12.
Genome Med ; 11(1): 68, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31694722

RESUMEN

BACKGROUND: Since different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements, underlie intellectual disability, we evaluated the use of whole-genome sequencing (WGS) rather than chromosomal microarray analysis (CMA) as a first-line genetic diagnostic test. METHODS: We analyzed three cohorts with short-read WGS: (i) a retrospective cohort with validated copy number variants (CNVs) (cohort 1, n = 68), (ii) individuals referred for monogenic multi-gene panels (cohort 2, n = 156), and (iii) 100 prospective, consecutive cases referred to our center for CMA (cohort 3). Bioinformatic tools developed include FindSV, SVDB, Rhocall, Rhoviz, and vcf2cytosure. RESULTS: First, we validated our structural variant (SV)-calling pipeline on cohort 1, consisting of three trisomies and 79 deletions and duplications with a median size of 850 kb (min 500 bp, max 155 Mb). All variants were detected. Second, we utilized the same pipeline in cohort 2 and analyzed with monogenic WGS panels, increasing the diagnostic yield to 8%. Next, cohort 3 was analyzed by both CMA and WGS. The WGS data was processed for large (> 10 kb) SVs genome-wide and for exonic SVs and SNVs in a panel of 887 genes linked to intellectual disability as well as genes matched to patient-specific Human Phenotype Ontology (HPO) phenotypes. This yielded a total of 25 pathogenic variants (SNVs or SVs), of which 12 were detected by CMA as well. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. Finally, a case of Prader-Willi syndrome with uniparental disomy (UPD) was validated in the WGS data. Important positional information was obtained in all cohorts. Remarkably, 7% of the analyzed cases harbored complex structural variants, as exemplified by a ring chromosome and two duplications found to be an insertional translocation and part of a cryptic unbalanced translocation, respectively. CONCLUSION: The overall diagnostic rate of 27% was more than doubled compared to clinical microarray (12%). Using WGS, we detected a wide range of SVs with high accuracy. Since the WGS data also allowed for analysis of SNVs, UPD, and STRs, it represents a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.


Asunto(s)
Análisis Citogenético/métodos , Marcadores Genéticos , Genoma Humano , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma/métodos , Niño , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Pruebas Diagnósticas de Rutina , Femenino , Humanos , Masculino , Proyectos Piloto , Estudios Prospectivos , Estudios Retrospectivos
13.
Stem Cell Reports ; 12(4): 696-711, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30827875

RESUMEN

Neurodegenerative disorders are an increasingly common and irreversible burden on society, often affecting the aging population, but their etiology and disease mechanisms are poorly understood. Studying monogenic neurodegenerative diseases with known genetic cause provides an opportunity to understand cellular mechanisms also affected in more complex disorders. We recently reported that loss-of-function mutations in the autophagy adaptor protein SQSTM1/p62 lead to a slowly progressive neurodegenerative disease presenting in childhood. To further elucidate the neuronal involvement, we studied the cellular consequences of loss of p62 in a neuroepithelial stem cell (NESC) model and differentiated neurons derived from reprogrammed p62 patient cells or by CRISPR/Cas9-directed gene editing in NESCs. Transcriptomic and proteomic analyses suggest that p62 is essential for neuronal differentiation by controlling the metabolic shift from aerobic glycolysis to oxidative phosphorylation required for neuronal maturation. This shift is blocked by the failure to sufficiently downregulate lactate dehydrogenase expression due to the loss of p62, possibly through impaired Hif-1α downregulation and increased sensitivity to oxidative stress. The findings imply an important role for p62 in neuronal energy metabolism and particularly in the regulation of the shift between glycolysis and oxidative phosphorylation required for normal neurodifferentiation.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Metabolismo Energético/genética , Proteína Sequestosoma-1/genética , Perfilación de la Expresión Génica , Glucólisis , Humanos , Mitofagia , Modelos Biológicos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Neuronas/metabolismo , Fosforilación Oxidativa , Estrés Oxidativo , Oxígeno/metabolismo , Proteína Sequestosoma-1/metabolismo
15.
Orphanet J Rare Dis ; 12(1): 73, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28427446

RESUMEN

BACKGROUND: Mitochondrial diseases due to defective respiratory chain complex III (CIII) are relatively uncommon. The assembly of the eleven-subunit CIII is completed by the insertion of the Rieske iron-sulfur protein, a process for which BCS1L protein is indispensable. Mutations in the BCS1L gene constitute the most common diagnosed cause of CIII deficiency, and the phenotypic spectrum arising from mutations in this gene is wide. RESULTS: A case of CIII deficiency was investigated in depth to assess respiratory chain function and assembly, and brain, skeletal muscle and liver histology. Exome sequencing was performed to search for the causative mutation(s). The patient's platelets and muscle mitochondria showed respiration defects and defective assembly of CIII was detected in fibroblast mitochondria. The patient was compound heterozygous for two novel mutations in BCS1L, c.306A > T and c.399delA. In the cerebral cortex a specific pattern of astrogliosis and widespread loss of microglia was observed. Further analysis showed loss of Kupffer cells in the liver. These changes were not found in infants suffering from GRACILE syndrome, the most severe BCS1L-related disorder causing early postnatal mortality, but were partially corroborated in a knock-in mouse model of BCS1L deficiency. CONCLUSIONS: We describe two novel compound heterozygous mutations in BCS1L causing CIII deficiency. The pathogenicity of one of the mutations was unexpected and points to the importance of combining next generation sequencing with a biochemical approach when investigating these patients. We further show novel manifestations in brain, skeletal muscle and liver, including abnormality in specialized resident macrophages (microglia and Kupffer cells). These novel phenotypes forward our understanding of CIII deficiencies caused by BCS1L mutations.


Asunto(s)
Acidosis Láctica/genética , Colestasis/genética , Retardo del Crecimiento Fetal/genética , Hemosiderosis/genética , Errores Innatos del Metabolismo/genética , Enfermedades Mitocondriales/congénito , Aminoacidurias Renales/genética , Animales , Transporte de Electrón/fisiología , Complejo III de Transporte de Electrones/genética , Flavoproteínas Transportadoras de Electrones/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Enfermedades Mitocondriales/genética , Encefalomiopatías Mitocondriales/genética , Mutación/genética
16.
Am J Hum Genet ; 99(3): 735-743, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545679

RESUMEN

SQSTM1 (sequestosome 1; also known as p62) encodes a multidomain scaffolding protein involved in various key cellular processes, including the removal of damaged mitochondria by its function as a selective autophagy receptor. Heterozygous variants in SQSTM1 have been associated with Paget disease of the bone and might contribute to neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Using exome sequencing, we identified three different biallelic loss-of-function variants in SQSTM1 in nine affected individuals from four families with a childhood- or adolescence-onset neurodegenerative disorder characterized by gait abnormalities, ataxia, dysarthria, dystonia, vertical gaze palsy, and cognitive decline. We confirmed absence of the SQSTM1/p62 protein in affected individuals' fibroblasts and found evidence of a defect in the early response to mitochondrial depolarization and autophagosome formation. Our findings expand the SQSTM1-associated phenotypic spectrum and lend further support to the concept of disturbed selective autophagy pathways in neurodegenerative diseases.


Asunto(s)
Ataxia/genética , Autofagia/genética , Distonía/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Proteína Sequestosoma-1/deficiencia , Parálisis Supranuclear Progresiva/genética , Adolescente , Adulto , Edad de Inicio , Ataxia/complicaciones , Autofagosomas/metabolismo , Autofagosomas/patología , Niño , Trastornos del Conocimiento/genética , Disartria/complicaciones , Disartria/genética , Distonía/complicaciones , Femenino , Fibroblastos/metabolismo , Marcha/genética , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Trastornos del Movimiento/complicaciones , Trastornos del Movimiento/genética , Enfermedades Neurodegenerativas/complicaciones , Linaje , Fenotipo , ARN Mensajero/análisis , Proteína Sequestosoma-1/genética , Parálisis Supranuclear Progresiva/complicaciones , Adulto Joven
17.
Eur J Paediatr Neurol ; 20(3): 457-61, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26975589

RESUMEN

UNLABELLED: We report two siblings of Swedish origin with infantile Biotin and Thiamine Responsive Basal Ganglia Disease (BTRBG). CASE REPORT: Initial symptoms were in both cases lethargia, with reduced contact and poor feeding from the age of 5 weeks. Magnetic resonance imaging showed altered signal in the basal ganglia, along with grey and white matter abnormalities. The diagnosis BTRBG was not recognized in the first sibling who died at the age of 8 weeks. The second sibling was started on biotin and thiamine immediately upon development of symptoms, leading to clinical improvement and partial reversion of the magnetic resonance imaging findings. Genetic analysis of the SLC19A3 gene identified two mutations, c.74dupT and c.1403delA, carried in compound heterozygous form in both boys, each inherited from one parent. COMMENTS: The first mutation has previously been described in children with BTRBG, and the second mutation is novel. Although the clinical picture in BTRGB is very severe it is also rather unspecific and the diagnosis may be missed. CONCLUSION: This report highlights the importance of considering biotin and thiamine treatment also in a European infant born to non-consanguineous parents, who presents with symptoms of acute/subacute encephalopathy.


Asunto(s)
Enfermedades de los Ganglios Basales/diagnóstico , Enfermedades de los Ganglios Basales/tratamiento farmacológico , Biotina/uso terapéutico , Proteínas de Transporte de Membrana/genética , Tiamina/uso terapéutico , Complejo Vitamínico B/uso terapéutico , Enfermedades de los Ganglios Basales/genética , Diagnóstico Diferencial , Heterocigoto , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Mutación/genética , Hermanos , Población Blanca/genética
18.
Am J Hum Genet ; 97(5): 761-8, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26522469

RESUMEN

S-adenosylmethionine (SAM) is the predominant methyl group donor and has a large spectrum of target substrates. As such, it is essential for nearly all biological methylation reactions. SAM is synthesized by methionine adenosyltransferase from methionine and ATP in the cytoplasm and subsequently distributed throughout the different cellular compartments, including mitochondria, where methylation is mostly required for nucleic-acid modifications and respiratory-chain function. We report a syndrome in three families affected by reduced intra-mitochondrial methylation caused by recessive mutations in the gene encoding the only known mitochondrial SAM transporter, SLC25A26. Clinical findings ranged from neonatal mortality resulting from respiratory insufficiency and hydrops to childhood acute episodes of cardiopulmonary failure and slowly progressive muscle weakness. We show that SLC25A26 mutations cause various mitochondrial defects, including those affecting RNA stability, protein modification, mitochondrial translation, and the biosynthesis of CoQ10 and lipoic acid.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Proteínas de Unión al Calcio/genética , Metilación de ADN , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Debilidad Muscular/genética , Mutación/genética , S-Adenosilmetionina/metabolismo , Secuencia de Aminoácidos , Preescolar , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Debilidad Muscular/patología , Linaje , Pronóstico , Estabilidad del ARN , Homología de Secuencia de Aminoácido , Ácido Tióctico/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
19.
Nat Commun ; 6: 8038, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26333769

RESUMEN

The potassium-chloride co-transporter KCC2, encoded by SLC12A5, plays a fundamental role in fast synaptic inhibition by maintaining a hyperpolarizing gradient for chloride ions. KCC2 dysfunction has been implicated in human epilepsy, but to date, no monogenic KCC2-related epilepsy disorders have been described. Here we show recessive loss-of-function SLC12A5 mutations in patients with a severe infantile-onset pharmacoresistant epilepsy syndrome, epilepsy of infancy with migrating focal seizures (EIMFS). Decreased KCC2 surface expression, reduced protein glycosylation and impaired chloride extrusion contribute to loss of KCC2 activity, thereby impairing normal synaptic inhibition and promoting neuronal excitability in this early-onset epileptic encephalopathy.


Asunto(s)
Cloruros/metabolismo , Epilepsias Parciales/genética , Inhibición Neural/genética , Neuronas/metabolismo , Simportadores/genética , Animales , Niño , Preescolar , Células HEK293 , Humanos , Immunoblotting , Lactante , Masculino , Mutación , Técnicas de Placa-Clamp , Linaje , Análisis de Secuencia de ADN , Simportadores/metabolismo , Pez Cebra , Proteínas de Pez Cebra , Cotransportadores de K Cl
20.
J Med Genet ; 52(11): 779-83, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26084283

RESUMEN

BACKGROUND: Coenzyme Q is an essential mitochondrial electron carrier, redox cofactor and a potent antioxidant in the majority of cellular membranes. Coenzyme Q deficiency has been associated with a range of metabolic diseases, as well as with some drug treatments and ageing. METHODS: We used whole exome sequencing (WES) to investigate patients with inherited metabolic diseases and applied a novel ultra-pressure liquid chromatography-mass spectrometry approach to measure coenzyme Q in patient samples. RESULTS: We identified a homozygous missense mutation in the COQ7 gene in a patient with complex mitochondrial deficiency, resulting in severely reduced coenzyme Q levels We demonstrate that the coenzyme Q analogue 2,4-dihydroxybensoic acid (2,4DHB) was able to specifically bypass the COQ7 deficiency, increase cellular coenzyme Q levels and rescue the biochemical defect in patient fibroblasts. CONCLUSION: We report the first patient with primary coenzyme Q deficiency due to a homozygous COQ7 mutation and a potentially beneficial treatment using 2,4DHB.


Asunto(s)
Ataxia/genética , Hidroxibenzoatos/uso terapéutico , Enfermedades Mitocondriales/genética , Debilidad Muscular/genética , Mutación Missense , Ubiquinona/deficiencia , Secuencia de Aminoácidos , Ataxia/diagnóstico , Ataxia/tratamiento farmacológico , Niño , Preescolar , Cromatografía Liquida , Análisis Mutacional de ADN , Exoma , Homocigoto , Humanos , Recién Nacido , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/tratamiento farmacológico , Datos de Secuencia Molecular , Debilidad Muscular/diagnóstico , Debilidad Muscular/tratamiento farmacológico , Alineación de Secuencia , Espectrometría de Masas en Tándem , Ubiquinona/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...