Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 114: 311-324, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657643

RESUMEN

BACKGROUND: The pathophysiology of autism spectrum disorder (ASD) involves genetic and environmental factors. Mounting evidence demonstrates a role for the gut microbiome in ASD, with signaling via short-chain fatty acids (SCFA) as one mechanism. Here, we utilize mice carrying deletion to exons 4-22 of Shank3 (Shank3KO) to model gene by microbiome interactions in ASD. We identify SCFA acetate as a mediator of gut-brain interactions and show acetate supplementation reverses social deficits concomitant with alterations to medial prefrontal cortex (mPFC) transcriptional regulation independent of microbiome status. METHODS: Shank3KO and wild-type (Wt) littermates were divided into control, Antibiotic (Abx), Acetate and Abx + Acetate groups upon weaning. After six weeks, animals underwent behavioral testing. Molecular analysis including 16S and metagenomic sequencing, metabolomic and transcriptional profiling were conducted. Additionally, targeted serum metabolomic data from Phelan McDermid Syndrome (PMS) patients (who are heterozygous for the Shank3 gene) were leveraged to assess levels of SCFA's relative to ASD clinical measures. RESULTS: Shank3KO mice were found to display social deficits, dysregulated gut microbiome and decreased cecal levels of acetate - effects exacerbated by Abx treatment. RNA-sequencing of mPFC showed unique gene expression signature induced by microbiome depletion in the Shank3KO mice. Oral treatment with acetate reverses social deficits and results in marked changes in gene expression enriched for synaptic signaling, pathways among others, even in Abx treated mice. Clinical data showed sex specific correlations between levels of acetate and hyperactivity scores. CONCLUSION: These results suggest a key role for the gut microbiome and the neuroactive metabolite acetate in regulating ASD-like behaviors.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Masculino , Femenino , Ratones , Animales , Trastorno del Espectro Autista/genética , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal , Acetatos/farmacología , Suplementos Dietéticos , Proteínas de Microfilamentos
2.
Curr Eye Res ; 48(8): 736-749, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37083467

RESUMEN

PURPOSE: Impairment of the trabecular meshwork (TM) is the principal cause of increased outflow resistance in the glaucomatous eye. Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) are emerging as potential mediators of TM cell/tissue dysfunction. Furthermore, YAP/TAZ activity was recently found to be controlled by the mevalonate pathway in non-ocular cells. Clinically used statins block the mevalonate cascade and were shown to improve TM cell pathobiology; yet, the link to YAP/TAZ signaling was not investigated. In this study, we hypothesized that simvastatin attenuates glucocorticoid-induced human TM (HTM) cell dysfunction via YAP/TAZ inactivation. METHODS: Primary HTM cells were seeded atop or encapsulated within bioengineered extracellular matrix (ECM) hydrogels. Dexamethasone was used to induce a pathologic phenotype in HTM cells in the absence or presence of simvastatin. Changes in YAP/TAZ activity, actin cytoskeletal organization, phospho-myosin light chain levels, hydrogel contraction/stiffness, and fibronectin deposition were assessed. RESULTS: Simvastatin potently blocked pathologic YAP/TAZ nuclear localization/activity, actin stress fiber formation, and myosin light chain phosphorylation in HTM cells. Importantly, simvastatin co-treatment significantly attenuated dexamethasone-induced ECM contraction/stiffening and fibronectin mRNA and protein levels. Sequential treatment was similarly effective but did not match clinically-used Rho kinase inhibition. CONCLUSIONS: YAP/TAZ inactivation with simvastatin attenuates HTM cell pathobiology in a tissue-mimetic ECM microenvironment. Our data may help explain the association of statin use with a reduced risk of developing glaucoma via indirect YAP/TAZ inhibition as a proposed regulatory mechanism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Glaucoma , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Fibronectinas/metabolismo , Malla Trabecular/metabolismo , Transactivadores/metabolismo , Transactivadores/farmacología , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Actinas/metabolismo , Simvastatina/farmacología , Cadenas Ligeras de Miosina/metabolismo , Ácido Mevalónico/metabolismo , Ácido Mevalónico/farmacología , Glaucoma/metabolismo , Dexametasona/farmacología
3.
Exp Eye Res ; 220: 109102, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525298

RESUMEN

In glaucoma, astrocytes within the optic nerve head (ONH) rearrange their actin cytoskeleton, while becoming reactive and upregulating intermediate filament glial fibrillary acidic protein (GFAP). Increased transforming growth factor beta 2 (TGF ß2) levels have been implicated in glaucomatous ONH dysfunction. A key limitation of using conventional 2D culture to study ONH astrocyte behavior is the inability to faithfully replicate the in vivo ONH microenvironment. Here, we engineer a 3D ONH astrocyte hydrogel to better mimic in vivo mouse ONH astrocyte (MONHA) morphology, and test induction of MONHA reactivity using TGF ß2. Primary MONHAs were isolated from C57BL/6J mice and cell purity confirmed. To engineer 3D cell-laden hydrogels, MONHAs were mixed with photoactive extracellular matrix components (collagen type I, hyaluronic acid) and crosslinked for 5 minutes using a photoinitiator (0.025% riboflavin) and UV light (405-500 nm, 10.3 mW/cm2). MONHA-encapsulated hydrogels were cultured for 3 weeks, and then treated with TGF ß2 (2.5, 5.0 or 10 ng/ml) for 7 days to assess for reactivity. Following encapsulation, MONHAs retained high cell viability in hydrogels and continued to proliferate over 4 weeks as determined by live/dead staining and MTS assays. Sholl analysis demonstrated that MONHAs within hydrogels developed increasing process complexity with increasing process length over time. Cell processes connected with neighboring cells, coinciding with Connexin43 expression within astrocytic processes. Treatment with TGF ß2 induced reactivity in MONHA-encapsulated hydrogels as determined by altered F-actin cytoskeletal morphology, increased GFAP expression, and elevated fibronectin and collagen IV deposition. Our data sets the stage for future use of this 3D biomimetic ONH astrocyte-encapsulated hydrogel to investigate astrocyte behavior in response to injury.


Asunto(s)
Glaucoma , Disco Óptico , Animales , Astrocitos/metabolismo , Células Cultivadas , Hidrogeles , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta2/metabolismo
4.
Exp Eye Res ; 212: 108791, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34656548

RESUMEN

Astrocytes within the optic nerve head undergo actin cytoskeletal rearrangement early in glaucoma, which coincides with astrocyte reactivity and extracellular matrix (ECM) deposition. Elevated transforming growth factor beta 2 (TGFß2) levels within astrocytes have been described in glaucoma, and TGFß signaling induces actin cytoskeletal remodeling and ECM deposition in many tissues. A key mechanism by which astrocytes sense and respond to external stimuli is via mechanosensitive ion channels. Here, we tested the hypothesis that inhibition of mechanosensitive channels will attenuate TGFß2-mediated optic nerve head astrocyte actin cytoskeletal remodeling, reactivity, and ECM deposition. Primary optic nerve head astrocytes were isolated from C57BL/6J mice and cell purity was confirmed by immunostaining. Astrocytes were treated with vehicle control, TGFß2 (5 ng/ml), GsMTx4 (a mechanosensitive channel inhibitor; 500 nM), or TGFß2 (5 ng/ml) + GsMTx4 (500 nM) for 48 h. FITC-phalloidin staining was used to assess the formation of f-actin stress fibers and to quantify the presence of crosslinked actin networks (CLANs). Cell reactivity was determined by immunostaining and immunoblotting for GFAP. Levels of fibronectin and collagen IV deposition were also quantified. Primary optic nerve head astrocytes were positive for the astrocyte marker GFAP and negative for markers for microglia (F4/80) and oligodendrocytes (OSP1). Significantly increased %CLAN-positive cells were observed after 48-h treatment with TGFß2 vs. control in a dose-dependent manner. Co-treatment with GsMTx4 significantly decreased %CLAN-positive cells vs. TGFß2 treatment and the presence of f-actin stress fibers. TGFß2 treatment significantly increased GFAP, fibronectin, and collagen IV levels, and GsMTx4 co-treatment ameliorated GFAP immunoreactivity. Our data suggest inhibition of mechanosensitive channel activity as a potential therapeutic strategy to modulate actin cytoskeletal remodeling within the optic nerve head in glaucoma.


Asunto(s)
Actinas/metabolismo , Astrocitos/metabolismo , Citoesqueleto/metabolismo , Glaucoma/metabolismo , Presión Intraocular/fisiología , Disco Óptico/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Animales , Astrocitos/patología , Células Cultivadas , Citoesqueleto/patología , Modelos Animales de Enfermedad , Glaucoma/patología , Glaucoma/fisiopatología , Ratones , Ratones Endogámicos C57BL , Disco Óptico/patología
5.
Exp Eye Res ; 205: 108472, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33516765

RESUMEN

Abnormal human trabecular meshwork (HTM) cell function and extracellular matrix (ECM) remodeling contribute to HTM stiffening in primary open-angle glaucoma (POAG). Most current cellular HTM model systems do not sufficiently replicate the complex native three dimensional (3D) cell-ECM interface, limiting their use for investigating POAG pathology. Tissue-engineered hydrogels are ideally positioned to overcome shortcomings of current models. Here, we report a novel biomimetic HTM hydrogel and test its utility as a POAG disease model. HTM hydrogels were engineered by mixing normal donor-derived HTM cells with collagen type I, elastin-like polypeptide and hyaluronic acid, each containing photoactive functional groups, followed by UV crosslinking. Glaucomatous conditions were induced with dexamethasone (DEX), and effects of the Rho-associated kinase (ROCK) inhibitor Y27632 on cytoskeletal organization and tissue-level function, contingent on HTM cell-ECM interactions, were assessed. DEX exposure increased HTM hydrogel contractility, f-actin and alpha smooth muscle actin abundance and rearrangement, ECM remodeling, and fibronectin deposition - all contributing to HTM hydrogel condensation and stiffening consistent with glaucomatous HTM tissue behavior. Y27632 treatment produced precisely the opposite effects and attenuated the DEX-induced pathologic changes, resulting in HTM hydrogel relaxation and softening. For model validation, confirmed glaucomatous HTM (GTM) cells were encapsulated; GTM hydrogels showed increased contractility, fibronectin deposition, and stiffening vs. normal HTM hydrogels despite reduced GTM cell proliferation. We have developed a biomimetic HTM hydrogel model for detailed investigation of 3D cell-ECM interactions under normal and simulated glaucomatous conditions. Its bidirectional responsiveness to pharmacological challenge and rescue suggests promising potential to serve as screening platform for new POAG treatments with focus on HTM biomechanics.


Asunto(s)
Glaucoma de Ángulo Abierto/patología , Hidrogeles , Modelos Biológicos , Malla Trabecular/patología , Actinas/metabolismo , Anciano de 80 o más Años , Amidas/farmacología , Materiales Biomiméticos , Proteínas del Citoesqueleto/genética , Dexametasona/farmacología , Elastina/genética , Inhibidores Enzimáticos/farmacología , Proteínas del Ojo/genética , Femenino , Regulación de la Expresión Génica/fisiología , Glaucoma de Ángulo Abierto/metabolismo , Glucocorticoides/farmacología , Glicoproteínas/genética , Humanos , Inmunohistoquímica , Piridinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Ingeniería de Tejidos , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores
6.
Sci Rep ; 10(1): 18134, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093530

RESUMEN

Major depressive disorder (MDD) is a complex condition with unclear pathophysiology. Molecular disruptions within limbic brain regions and the periphery contribute to depression symptomatology and a more complete understanding the diversity of molecular changes that occur in these tissues may guide the development of more efficacious antidepressant treatments. Here, we utilized a mouse chronic social stress model for the study of MDD and performed metabolomic, lipidomic, and proteomic profiling on serum plus several brain regions (ventral hippocampus, nucleus accumbens, and medial prefrontal cortex) of susceptible, resilient, and unstressed control mice. To identify how commonly used tricyclic antidepressants impact the molecular composition in these tissues, we treated stress-exposed mice with imipramine and repeated our multi-OMIC analyses. Proteomic analysis identified three serum proteins reduced in susceptible animals; lipidomic analysis detected differences in lipid species between resilient and susceptible animals in serum and brain; and metabolomic analysis revealed dysfunction of purine metabolism, beta oxidation, and antioxidants, which were differentially associated with stress susceptibility vs resilience by brain region. Antidepressant treatment ameliorated stress-induced behavioral abnormalities and affected key metabolites within outlined networks, most dramatically in the ventral hippocampus. This work presents a resource for chronic social stress-induced, tissue-specific changes in proteins, lipids, and metabolites and illuminates how molecular dysfunctions contribute to individual differences in stress sensitivity.


Asunto(s)
Encéfalo/metabolismo , Imipramina/farmacología , Metaboloma , Proteoma/análisis , Purinas/metabolismo , Suero/química , Estrés Psicológico/fisiopatología , Animales , Antidepresivos Tricíclicos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Lipidómica , Masculino , Ratones , Suero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...