Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Res Sq ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38645088

RESUMEN

Imaging reporter genes are indispensable for visualising biological processes in living subjects, particularly in cancer research where they have been used to observe tumour development, cancer cell dissemination, and treatment response. Engineering reporter genes into the germline frequently involves single imaging modality reporters operating over limited spatial scales. To address these limitations, we developed an inducible triple-reporter mouse model (Rosa26LSL - NRL) that integrates reporters for complementary imaging modalities, flfluorescence, bioluminescence and positron emission tomography (PET), along with inducible Cre-lox functionality for precise spatiotemporal control of reporter expression. We demonstrated robust reporter inducibility across various tissues in the Rosa26LSL - NRL mouse, facilitating effective tracking and characterisation of tumours in liver and lung cancer mouse models. We precisely pinpointed tumour location using multimodal whole-body imaging which guided in situ lung microscopy to visualise cell-cell interactions within the tumour microenvironment. The triple-reporter system establishes a robust new platform technology for multi-scale investigation of biological processes within whole animals, enabling tissue-specific and sensitive cell tracking, spanning from the whole-body to cellular scales.

3.
Nat Commun ; 15(1): 100, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168062

RESUMEN

Oncogenic KRAS mutations are well-described functionally and are known to drive tumorigenesis. Recent reports describe a significant prevalence of KRAS allelic imbalances or gene dosage changes in human cancers, including loss of the wild-type allele in KRAS mutant cancers. However, the role of wild-type KRAS in tumorigenesis and therapeutic response remains elusive. We report an in vivo murine model of colorectal cancer featuring deletion of wild-type Kras in the context of oncogenic Kras. Deletion of wild-type Kras exacerbates oncogenic KRAS signalling through MAPK and thus drives tumour initiation. Absence of wild-type Kras potentiates the oncogenic effect of KRASG12D, while incidentally inducing sensitivity to inhibition of MEK1/2. Importantly, loss of the wild-type allele in aggressive models of KRASG12D-driven CRC significantly alters tumour progression, and suppresses metastasis through modulation of the immune microenvironment. This study highlights the critical role for wild-type Kras upon tumour initiation, progression and therapeutic response in Kras mutant CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Desequilibrio Alélico , Genes ras , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación , Microambiente Tumoral/genética
4.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38011999

RESUMEN

EIF4A1 and cofactors EIF4B and EIF4H have been well characterised in cancers, including B cell malignancies, for their ability to promote the translation of oncogenes with structured 5' untranslated regions. However, very little is known of their roles in nonmalignant cells. Using mouse models to delete Eif4a1, Eif4b or Eif4h in B cells, we show that EIF4A1, but not EIF4B or EIF4H, is essential for B cell development and the germinal centre response. After B cell activation in vitro, EIF4A1 facilitates an increased rate of protein synthesis, MYC expression, and expression of cell cycle regulators. However, EIF4A1-deficient cells remain viable, whereas inhibition of EIF4A1 and EIF4A2 by Hippuristanol treatment induces cell death.


Asunto(s)
Linfocitos B , Factor 4A Eucariótico de Iniciación , ARN Helicasas , Animales , Ratones , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , ARN Helicasas/metabolismo
5.
Biology (Basel) ; 12(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37759637

RESUMEN

Barth syndrome (BTHS) is caused by mutations in tafazzin resulting in deficits in cardiolipin remodeling that alter major metabolic processes. The tafazzin gene is encoded on the X chromosome, and therefore BTHS primarily affects males. Female carriers are typically considered asymptomatic, but age-related changes have been reported in female carriers of other X-linked disorders. Therefore, we examined the phenotype of female mice heterozygous for deletion of the tafazzin gene (Taz-HET) at 3 and 12 months of age. Food intakes, body masses, lean tissue and adipose depot weights, daily activity levels, metabolic measures, and exercise capacity were assessed. Age-related changes in mice resulted in small but significant genotype-specific differences in Taz-HET mice compared with their female Wt littermates. By 12 months, Taz-HET mice weighed less than Wt controls and had smaller gonadal, retroperitoneal, and brown adipose depots and liver and brain masses, despite similar food consumption. Daily movement, respiratory exchange ratio, and total energy expenditure did not vary significantly between the age-matched genotypes. Taz-HET mice displayed improved glucose tolerance and insulin sensitivity at 12 months compared with their Wt littermates but had evidence of slightly reduced exercise capacity. Tafazzin mRNA levels were significantly reduced in the cardiac muscle of 12-month-old Taz-HET mice, which was associated with minor but significant alterations in the heart cardiolipin profile. This work is the first to report the characterization of a model of female carriers of heterozygous tafazzin deficiency and suggests that additional study, particularly with advancing age, is warranted.

6.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511352

RESUMEN

Barth Syndrome, a rare X-linked disorder affecting 1:300,000 live births, results from defects in Tafazzin, an acyltransferase that remodels cardiolipin and is essential for mitochondrial respiration. Barth Syndrome patients develop cardiomyopathy, muscular hypotonia and cyclic neutropenia during childhood, rarely surviving to middle age. At present, no effective therapy exists, and downstream transcriptional effects of Tafazzin dysfunction are incompletely understood. To identify novel, cell-specific, pathological pathways that mediate heart dysfunction, we performed single-nucleus RNA-sequencing (snRNA-seq) on wild-type (WT) and Tafazzin-knockout (Taz-KO) mouse hearts. We determined differentially expressed genes (DEGs) and inferred predicted cell-cell communication networks from these data. Surprisingly, DEGs were distributed heterogeneously across the cell types, with fibroblasts, cardiomyocytes, endothelial cells, macrophages, adipocytes and pericytes exhibiting the greatest number of DEGs between genotypes. One differentially expressed gene was detected for the lymphatic endothelial and mesothelial cell types, while no significant DEGs were found in the lymphocytes. A Gene Ontology (GO) analysis of these DEGs showed cell-specific effects on biological processes such as fatty acid metabolism in adipocytes and cardiomyocytes, increased translation in cardiomyocytes, endothelial cells and fibroblasts, in addition to other cell-specific processes. Analysis of ligand-receptor pair expression, to infer intercellular communication patterns, revealed the strongest dysregulated communication involved adipocytes and cardiomyocytes. For the knockout hearts, there was a strong loss of ligand-receptor pair expression involving adipocytes, and cardiomyocyte expression of ligand-receptor pairs underwent reorganization. These findings suggest that adipocyte and cardiomyocyte mitochondria may be most sensitive to mitochondrial Tafazzin deficiency and that rescuing adipocyte mitochondrial dysfunction, in addition to cardiomyocyte mitochondrial dysfunction, may provide therapeutic benefit in Barth Syndrome patients.


Asunto(s)
Síndrome de Barth , Cardiomiopatías , Ratones , Animales , Síndrome de Barth/metabolismo , Células Endoteliales/metabolismo , Ligandos , Transcriptoma , Modelos Animales de Enfermedad , Aciltransferasas/genética , Cardiolipinas/metabolismo , Ratones Noqueados , Comunicación Celular
7.
Cell Rep ; 42(6): 112562, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37245210

RESUMEN

Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.


Asunto(s)
Neoplasias de la Mama , Formiatos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Formiatos/metabolismo , Metionina , NADP , Especies Reactivas de Oxígeno , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo
8.
Hum Mol Genet ; 32(12): 2055-2067, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36917259

RESUMEN

Barth syndrome is an X-linked disorder caused by loss-of-function mutations in Tafazzin (TAZ), an acyltransferase that catalyzes remodeling of cardiolipin, a signature phospholipid of the inner mitochondrial membrane. Patients develop cardiac and skeletal muscle weakness, growth delay and neutropenia, although phenotypic expression varies considerably between patients. Taz knockout mice recapitulate many of the hallmark features of the disease. We used mouse genetics to test the hypothesis that genetic modifiers alter the phenotypic manifestations of Taz inactivation. We crossed TazKO/X females in the C57BL6/J inbred strain to males from eight inbred strains and evaluated the phenotypes of first-generation (F1) TazKO/Y progeny, compared to TazWT/Y littermates. We observed that genetic background strongly impacted phenotypic expression. C57BL6/J and CAST/EiJ[F1] TazKO/Y mice developed severe cardiomyopathy, whereas A/J[F1] TazKO/Y mice had normal heart function. C57BL6/J and WSB/EiJ[F1] TazKO/Y mice had severely reduced treadmill endurance, whereas endurance was normal in A/J[F1] and CAST/EiJ[F1] TazKO/Y mice. In all genetic backgrounds, cardiolipin showed similar abnormalities in knockout mice, and transcriptomic and metabolomic investigations identified signatures of mitochondrial uncoupling and activation of the integrated stress response. TazKO/Y cardiac mitochondria were small, clustered and had reduced cristae density in knockouts in severely affected genetic backgrounds but were relatively preserved in the permissive A/J[F1] strain. Gene expression and mitophagy measurements were consistent with reduced mitophagy in knockout mice in genetic backgrounds intolerant of Taz mutation. Our data demonstrate that genetic modifiers powerfully modulate phenotypic expression of Taz loss-of-function and act downstream of cardiolipin, possibly by altering mitochondrial quality control.


Asunto(s)
Síndrome de Barth , Masculino , Femenino , Animales , Ratones , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Factores de Transcripción/metabolismo , Modelos Animales de Enfermedad , Aciltransferasas/genética , Ratones Noqueados , Fenotipo
9.
Biomedicines ; 11(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831174

RESUMEN

Barth syndrome (BTHS) is an X-linked mitochondrial disease caused by mutations in the gene encoding for tafazzin (TAZ), a key enzyme in the remodeling of cardiolipin. Mice with a germline deficiency in Taz have been generated (Taz-KO) but not yet fully characterized. We performed physiological assessments of 3-, 6-, and 12-month-old male Taz-KO mice, including measures of perinatal survival, growth, lifespan, gross anatomy, whole-body energy and substrate metabolism, glucose homeostasis, and exercise capacity. Taz-KO mice displayed reduced viability, with lower-than-expected numbers of mice recorded at 4 weeks of age, and a shortened lifespan due to disease progression. At all ages, Taz-KO mice had lower body weights compared with wild-type (Wt) littermates despite similar absolute food intakes. This finding was attributed to reduced adiposity and diminutive organs and tissues, including heart and skeletal muscles. Although there were no differences in basal levels of locomotion between age-matched genotypes, indirect calorimetry studies showed higher energy expenditure measures and respiratory exchange ratios in Taz-KO mice. At the youngest age, Taz-KO mice had comparable glucose tolerance and insulin action to Wt mice, but while these measures indicated metabolic impairments in Wt mice with advancing age that were likely associated with increasing adiposity, Taz-KO mice were protected. Comparisons across the three age-cohorts revealed a significant and more severe deterioration of exercise capacity in Taz-KO mice than in their Wt littermate controls. The Taz-KO mouse model faithfully recapitulates important aspects of BTHS, and thus provides an important new tool to investigate pathophysiological mechanisms and potential therapies.

11.
Nat Commun ; 13(1): 7551, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477656

RESUMEN

The pro-tumourigenic role of epithelial TGFß signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFß signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFß signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFß signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFß signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.


Asunto(s)
Apoptosis , Factor de Crecimiento Transformador beta , Humanos , Apoptosis/genética
12.
Proc Natl Acad Sci U S A ; 119(26): e2111506119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737835

RESUMEN

Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, Nat. Cell Biol. 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux. Moreover, in a mouse model of fucosidosis-a disease characterized by inactivating mutations in FUCA1 [Stepien et al., Genes (Basel) 11, E1383 (2020)]-glycan and autophagosome/autolysosome accumulation accompanies tissue destruction. Mechanistically, using lectin capture and mass spectrometry, we identified several lysosomal enzymes with altered fucosylation in FUCA1-null cells. Moreover, we show that the activity of some of these enzymes in the absence of FUCA1 can no longer be induced upon autophagy stimulation, causing retardation of autophagic flux, which involves impaired autophagosome-lysosome fusion. These findings therefore show that dysregulated glycan degradation leads to defective autophagy, which is likely a contributing factor in the etiology of fucosidosis.


Asunto(s)
Fucosidosis , Macroautofagia , Polisacáridos , Animales , Fucosidosis/genética , Fucosidosis/metabolismo , Lisosomas/metabolismo , Macroautofagia/fisiología , Ratones , Polisacáridos/metabolismo , alfa-L-Fucosidasa/genética , alfa-L-Fucosidasa/metabolismo
13.
Sci Signal ; 15(720): eabd9099, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35133863

RESUMEN

Genetically encoded probes are widely used to visualize cellular processes in vitro and in vivo. Although effective in cultured cells, fluorescent protein tags and reporters are suboptimal in vivo because of poor tissue penetration and high background signal. Luciferase reporters offer improved signal-to-noise ratios but require injections of luciferin that can lead to variable responses and that limit the number and timing of data points that can be gathered. Such issues in studying the critical transcription factor p53 have limited insight on its activity in vivo during development and tissue injury responses. Here, by linking the expression of the near-infrared fluorescent protein iRFP713 to a synthetic p53-responsive promoter, we generated a knock-in reporter mouse that enabled noninvasive, longitudinal analysis of p53 activity in vivo in response to various stimuli. In the developing embryo, this model revealed the timing and localization of p53 activation. In adult mice, the model monitored p53 activation in response to irradiation and paracetamol- or CCl4-induced liver regeneration. After irradiation, we observed potent and sustained activation of p53 in the liver, which limited the production of reactive oxygen species (ROS) and promoted DNA damage resolution. We propose that this new reporter may be used to further advance our understanding of various physiological and pathophysiological p53 responses.


Asunto(s)
Regeneración Hepática , Proteína p53 Supresora de Tumor , Animales , Daño del ADN , Genes Reporteros , Regeneración Hepática/genética , Ratones , Regiones Promotoras Genéticas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
Nat Commun ; 12(1): 3464, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103493

RESUMEN

Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFß signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFß-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFß-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.


Asunto(s)
Carcinogénesis/metabolismo , Neoplasias del Colon/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Carcinogénesis/patología , Diferenciación Celular , Supervivencia Celular , Colon/patología , Neoplasias del Colon/genética , Células Epiteliales/metabolismo , Feto/patología , Inflamación/patología , Estimación de Kaplan-Meier , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Mutación , Pronóstico , Proteínas Proto-Oncogénicas B-raf/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Proteínas Señalizadoras YAP
16.
Nat Commun ; 12(1): 2335, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879799

RESUMEN

Current therapeutic options for treating colorectal cancer have little clinical efficacy and acquired resistance during treatment is common, even following patient stratification. Understanding the mechanisms that promote therapy resistance may lead to the development of novel therapeutic options that complement existing treatments and improve patient outcome. Here, we identify RAC1B as an important mediator of colorectal tumourigenesis and a potential target for enhancing the efficacy of EGFR inhibitor treatment. We find that high RAC1B expression in human colorectal cancer is associated with aggressive disease and poor prognosis and deletion of Rac1b in a mouse colorectal cancer model reduces tumourigenesis. We demonstrate that RAC1B interacts with, and is required for efficient activation of the EGFR signalling pathway. Moreover, RAC1B inhibition sensitises cetuximab resistant human tumour organoids to the effects of EGFR inhibition, outlining a potential therapeutic target for improving the clinical efficacy of EGFR inhibitors in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Antineoplásicos Inmunológicos/farmacología , Carcinogénesis , Línea Celular Tumoral , Cetuximab/farmacología , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptidos/deficiencia , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transducción de Señal , Regulación hacia Arriba , Vía de Señalización Wnt , Proteína de Unión al GTP rac1/deficiencia , Proteína de Unión al GTP rac1/genética
17.
Nat Genet ; 53(1): 16-26, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33414552

RESUMEN

Oncogenic KRAS mutations and inactivation of the APC tumor suppressor co-occur in colorectal cancer (CRC). Despite efforts to target mutant KRAS directly, most therapeutic approaches focus on downstream pathways, albeit with limited efficacy. Moreover, mutant KRAS alters the basal metabolism of cancer cells, increasing glutamine utilization to support proliferation. We show that concomitant mutation of Apc and Kras in the mouse intestinal epithelium profoundly rewires metabolism, increasing glutamine consumption. Furthermore, SLC7A5, a glutamine antiporter, is critical for colorectal tumorigenesis in models of both early- and late-stage metastatic disease. Mechanistically, SLC7A5 maintains intracellular amino acid levels following KRAS activation through transcriptional and metabolic reprogramming. This supports the increased demand for bulk protein synthesis that underpins the enhanced proliferation of KRAS-mutant cells. Moreover, targeting protein synthesis, via inhibition of the mTORC1 regulator, together with Slc7a5 deletion abrogates the growth of established Kras-mutant tumors. Together, these data suggest SLC7A5 as an attractive target for therapy-resistant KRAS-mutant CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Regiones no Traducidas 5'/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Carcinogénesis/patología , Proliferación Celular , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Estimación de Kaplan-Meier , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor/metabolismo , Metástasis de la Neoplasia , Oncogenes , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
18.
J Invest Dermatol ; 141(3): 628-637.e15, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32777214

RESUMEN

BRAFV600E is the most common driver mutation in human cutaneous melanoma and is frequently accompanied by loss of the tumor-suppressing phosphatase PTEN. Recent evidence suggests a co-operative role for RAC1 activity in BRAFV600E-driven melanoma progression and drug resistance. However, the underlying molecular mechanisms and the role of RAC1 downstream targets are not well-explored. In this study, we examine the role of the NCKAP1 subunit of the pentameric cytoskeletal SCAR/WAVE complex, a major downstream target of RAC1, in a mouse model of melanoma driven by BRAFV600E;PTEN loss. The SCAR/WAVE complex is the major driver of lamellipodia formation and cell migration downstream of RAC1 and depends on NCKAP1 for its integrity. Targeted deletion of Nckap1 in the melanocyte lineage delayed tumor onset and progression of a mutant Braf;Pten loss‒driven melanoma mouse model. Nckap1-depleted tumors displayed fibrotic stroma with increased collagen deposition concomitant with enhanced immune infiltration. Nckap1 loss slowed proliferation and tumor growth, highlighting a role in cell-cycle progression. Altogether, we propose that NCKAP1-orchestrated actin polymerization is essential for tumor progression and maintenance of tumor tissue integrity in a mutant Braf/Pten loss‒driven mouse model for melanoma.


Asunto(s)
Melanoma/patología , Proteínas de la Membrana/metabolismo , Neuropéptidos/metabolismo , Neoplasias Cutáneas/patología , Proteína de Unión al GTP rac1/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Melanoma/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética
19.
Genes Dev ; 35(1-2): 117-132, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33334825

RESUMEN

The p53 tumor suppressor protein is a potent activator of proliferative arrest and cell death. In normal cells, this pathway is restrained by p53 protein degradation mediated by the E3-ubiquitin ligase activity of MDM2. Oncogenic stress releases p53 from MDM2 control, so activating the p53 response. However, many tumors that retain wild-type p53 inappropriately maintain the MDM2-p53 regulatory loop in order to continuously suppress p53 activity. We have shown previously that single point mutations in the human MDM2 RING finger domain prevent the interaction of MDM2 with the E2/ubiquitin complex, resulting in the loss of MDM2's E3 activity without preventing p53 binding. Here, we show that an analogous mouse MDM2 mutant (MDM2 I438K) restrains p53 sufficiently for normal growth but exhibits an enhanced stress response in vitro. In vivo, constitutive expression of MDM2 I438K leads to embryonic lethality that is rescued by p53 deletion, suggesting MDM2 I438K is not able to adequately control p53 function through development. However, the switch to I438K expression is tolerated in adult mice, sparing normal cells but allowing for an enhanced p53 response to DNA damage. Viewed as a proof of principle model for therapeutic development, our findings support an approach that would inhibit MDM2 E3 activity without preventing MDM2/p53 binding as a promising avenue for development of compounds to activate p53 in tumors with reduced on-target toxicities.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Animales , Antineoplásicos Hormonales/farmacología , Proliferación Celular/genética , Células Cultivadas , Embrión de Mamíferos/enzimología , Activación Enzimática/efectos de los fármacos , Femenino , Masculino , Ratones , Mutación , Tamoxifeno/farmacología
20.
Cell Metab ; 32(6): 981-995.e7, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33264603

RESUMEN

Mitochondria constantly adapt to the metabolic needs of a cell. This mitochondrial plasticity is critical to T cells, which modulate metabolism depending on antigen-driven signals and environment. We show here that de novo synthesis of the mitochondrial membrane-specific lipid cardiolipin maintains CD8+ T cell function. T cells deficient for the cardiolipin-synthesizing enzyme PTPMT1 had reduced cardiolipin and responded poorly to antigen because basal cardiolipin levels were required for activation. However, neither de novo cardiolipin synthesis, nor its Tafazzin-dependent remodeling, was needed for T cell activation. In contrast, PTPMT1-dependent cardiolipin synthesis was vital when mitochondrial fitness was required, most notably during memory T cell differentiation or nutrient stress. We also found CD8+ T cell defects in a small cohort of patients with Barth syndrome, where TAFAZZIN is mutated, and in a Tafazzin-deficient mouse model. Thus, the dynamic regulation of a single mitochondrial lipid is crucial for CD8+ T cell immunity.


Asunto(s)
Aciltransferasas/inmunología , Síndrome de Barth/inmunología , Linfocitos T CD8-positivos/inmunología , Cardiolipinas/inmunología , Mitocondrias/inmunología , Fosfohidrolasa PTEN/inmunología , Animales , Síndrome de Barth/patología , Linfocitos T CD8-positivos/citología , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...