Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; 14(4): e0069623, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37382436

RESUMEN

High-risk human papillomaviruses (PV) account for approximately 600,000 new cancers per year. The early protein E8^E2 is a conserved repressor of PV replication, whereas E4 is a late protein that arrests cells in G2 and collapses keratin filaments to facilitate virion release. While inactivation of the Mus musculus PV1 (MmuPV1) E8 start codon (E8-) increases viral gene expression, surprisingly, it prevents wart formation in FoxN1nu/nu mice. To understand this surprising phenotype, the impact of additional E8^E2 mutations was characterized in tissue culture and mice. MmuPV1 and HPV E8^E2 similarly interact with cellular NCoR/SMRT-HDAC3 co-repressor complexes. Disruption of the splice donor sequence used to generate the E8^E2 transcript or E8^E2 mutants (mt) with impaired binding to NCoR/SMRT-HDAC3 activates MmuPV1 transcription in murine keratinocytes. These MmuPV1 E8^E2 mt genomes also fail to induce warts in mice. The phenotype of E8^E2 mt genomes in undifferentiated cells resembles productive PV replication in differentiated keratinocytes. Consistent with this, E8^E2 mt genomes induced aberrant E4 expression in undifferentiated keratinocytes. In line with observations for HPV, MmuPV1 E4-positive cells displayed a shift to the G2 phase of the cell cycle. In summary, we propose that in order to enable both expansion of infected cells and wart formation in vivo, MmuPV1 E8^E2 inhibits E4 protein expression in the basal keratinocytes that would otherwise undergo E4-mediated cell cycle arrest. IMPORTANCE Human papillomaviruses (PVs) initiate productive replication, which is characterized by genome amplification and expression of E4 protein strictly within suprabasal, differentiated keratinocytes. Mus musculus PV1 mutants that disrupt splicing of the E8^E2 transcript or abolish the interaction of E8^E2 with cellular NCoR/SMRT-HDAC3 co-repressor complexes display increased gene expression in tissue culture but are unable to form warts in vivo. This confirms that the repressor activity of E8^E2 is required for tumor formation and genetically defines a conserved E8 interaction domain. E8^E2 prevents expression of E4 protein in basal-like, undifferentiated keratinocytes and thereby their arrest in G2 phase. Since binding of E8^E2 to NCoR/SMRT-HDAC3 co-repressor is required to enable expansion of infected cells in the basal layer and wart formation in vivo, this interaction represents a novel, conserved, and potentially druggable target.

2.
Virology ; 581: 39-47, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870121

RESUMEN

Productive replication of human papillomaviruses (HPV) only takes place in differentiating keratinocytes. The HPV16 E8^E2 protein acts as a repressor of viral gene expression and genome replication and HPV16 E8^E2 knock-out (E8-) genomes display enhanced viral late protein expression in differentiated cells. Global transcriptome analysis of differentiated HPV16 wild-type and E8-cell lines revealed a small number of differentially expressed genes which are not related to cell cycle, DNA metabolism or keratinocyte differentiation. The analysis of selected genes suggested that deregulation requires cell differentiation and positively correlated with the expression of viral late, not early transcripts. Consistent with this, the additional knock-out of the viral E4 and E5 genes, which are known to enhance productive replication, attenuated the deregulation of these host cell genes. In summary, these data reveal that productive HPV16 replication modulates host cell transcription.


Asunto(s)
Papillomavirus Humano 16 , Proteínas Oncogénicas Virales , Humanos , Papillomavirus Humano 16/metabolismo , Replicación Viral , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Línea Celular , Diferenciación Celular , Expresión Génica , Queratinocitos
3.
J Virol ; 96(23): e0149822, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36394329

RESUMEN

Persistent infections with high-risk human papillomaviruses (HR-HPV) from the genus alpha are established risk factors for the development of anogenital and oropharyngeal cancers. In contrast, HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer (cSCC) in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Keratinocytes are the in vivo target cells for HPV, but keratinocyte models to investigate the replication and oncogenic activities of beta-HPV genomes have not been established. A recent study revealed, that beta-HPV49 immortalizes normal human keratinocytes (NHK) only, when the viral E8^E2 repressor (E8-) is inactivated (T. M. Rehm, E. Straub, T. Iftner, and F. Stubenrauch, Proc Natl Acad Sci U S A 119:e2118930119, 2022, https://doi.org/10.1073/pnas.2118930119). We now demonstrate that beta-HPV8 and HPV38 wild-type or E8- genomes are unable to immortalize NHK. Nevertheless, HPV8 and HPV38 express E6 and E7 oncogenes and other transcripts in transfected NHK. Inactivation of the conserved E1 and E2 replication genes reduces viral transcription, whereas E8- genomes display enhanced viral transcription, suggesting that beta-HPV genomes replicate in NHK. Furthermore, growth of HPV8- or HPV38-transfected NHK in organotypic cultures, which are routinely used to analyze the productive replication cycle of HR-HPV, induces transcripts encoding the L1 capsid gene, suggesting that the productive cycle is initiated. In addition, transcription patterns in HPV8 organotypic cultures and in an HPV8-positive lesion from an EV patient show similarities. Taken together, these data indicate that NHK are a suitable system to analyze beta-HPV8 and HPV38 replication. IMPORTANCE High-risk HPV, from the genus alpha, can cause anogenital or oropharyngeal malignancies. The oncogenic properties of high-risk HPV are important for their differentiation-dependent replication in human keratinocytes, the natural target cell for HPV. HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Currently, the replication cycle of beta-HPV has not been studied in human keratinocytes. We now provide evidence that beta-HPV8 and 38 are transcriptionally active in human keratinocytes. Inactivation of the viral E8^E2 repressor protein greatly increases genome replication and transcription of the E6 and E7 oncogenes, but surprisingly, this does not result in immortalization of keratinocytes. Differentiation of HPV8- or HPV38-transfected keratinocytes in organotypic cultures induces transcripts encoding the L1 capsid gene, suggesting that productive replication is initiated. This indicates that human keratinocytes are suited as a model to investigate beta-HPV replication.


Asunto(s)
Virus del Papiloma Humano , Queratinocitos , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Humanos , Epidermodisplasia Verruciforme/virología , Queratinocitos/virología , Neoplasias de Células Escamosas/virología , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Virus del Papiloma Humano/genética , Genoma Viral
4.
Proc Natl Acad Sci U S A ; 119(11): e2118930119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254896

RESUMEN

SignificanceHigh-risk (HR) human papillomaviruses (HPV) from the genus alpha cause anogenital and oropharyngeal cancers, whereas the contribution of HPV from the genus beta to the development of cutaneous squamous cell cancer is still under debate. HR-HPV genomes display potent immortalizing activity in human keratinocytes, the natural target cell for HPV. This paper shows that immortalization of keratinocytes by the beta-HPV49 genome requires the inactivation of the viral E8^E2 repressor protein and the presence of the E6 and E7 oncoproteins but also of the E1 and E2 replication proteins. This reveals important differences in the carcinogenic properties of HR-HPV and beta-HPV but also warrants further investigations on the distribution and mutation frequencies of beta-HPV in human cancers.


Asunto(s)
Betapapillomavirus/fisiología , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Queratinocitos/virología , Infecciones por Papillomavirus/virología , Replicación Viral , Línea Celular Transformada , Genoma Viral , Humanos , Queratinocitos/metabolismo , Proteínas Oncogénicas Virales/genética , ARN Viral
5.
Sci Rep ; 12(1): 3000, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194094

RESUMEN

Human papillomaviruses are DNA tumor viruses. A persistent infection with high-risk HPV types is the necessary risk factor for the development of anogenital carcinoma. The E6 protein is a viral oncoprotein that directly interacts with different cellular regulatory proteins mainly affecting the cell cycle, cellular differentiation and polarization of epithelial cells. In dependency of the phylogenetic classification of HPV different interaction partners of E6 have been described. The Notch pathway seems to be one common target of HPV, which can be up or down regulated by different E6 proteins. Our novel triple fluorescence flow-cytometry-based assay allows a semi-quantitative comparison of the E6 proteins´ effect on the Notch pathway using a Notch-responsive reporter plasmid. As a result, all E6 proteins of beta-HPV repressed the Notch reporter expression, of which HPV38 E6 showed the greatest repression potential. In contrast, alpha-HPV E6 of HPV16, activates the reporter expression most significantly, whereas E6 of HPV31 and low-risk HPV6b showed significant activation only in a p53-null cell line. Interestingly, HPV18 E6, with the second highest carcinogenic risk, shows no effect. This high divergence within different genus of HPV is important for targeting the Notch pathway regarding a potential HPV therapy.


Asunto(s)
Citometría de Flujo/métodos , Fluorescencia , Regulación Viral de la Expresión Génica/genética , Proteínas Oncogénicas Virales/fisiología , Papillomaviridae/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Unión al ADN , Linfocitos Nulos , Papillomaviridae/clasificación , Filogenia , Proteínas Represoras
6.
J Virol ; 95(8)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33472931

RESUMEN

Human papillomavirus (HPV) E1 and E2 proteins activate genome replication. E2 also modulates viral gene expression and is involved in the segregation of viral genomes. In addition to full length E2, almost all PV share the ability to encode an E8^E2 protein, that is a fusion of E8 with the C-terminal half of E2 which mediates specific DNA-binding and dimerization. HPV E8^E2 acts as a repressor of viral gene expression and genome replication. To analyze the function of E8^E2 in vivo, we used the Mus musculus PV1 (MmuPV1)-mouse model system. Characterization of the MmuPV1 E8^E2 protein revealed that it inhibits transcription from viral promoters in the absence and presence of E1 and E2 proteins and that this is partially dependent upon the E8 domain. MmuPV1 genomes, in which the E8 ATG start codon was disrupted (E8-), displayed a 10- to 25-fold increase in viral gene expression compared to wt genomes in cultured normal mouse tail keratinocytes in short-term experiments. This suggests that the function and mechanism of E8^E2 is conserved between MmuPV1 and HPVs. Surprisingly, challenge of athymic nude Foxn1nu/nu mice with MmuPV1 E8- genomes did not induce warts on the tail in contrast to wt MmuPV1. Furthermore, viral gene expression was completely absent at E8- MmuPV1 sites 20 - 22 weeks after DNA challenge on the tail or quasivirus challenge in the vaginal vault. This reveals that expression of E8^E2 is necessary to form tumors in vivo and that this is independent from the presence of T-cells.IMPORTANCE HPV encode an E8^E2 protein which acts as repressors of viral gene expression and genome replication. In cultured normal keratinocytes, E8^E2 is essential for long-term episomal maintenance of HPV31 genomes, but not for HPV16. To understand E8^E2's role in vivo, the Mus musculus PV1 (MmuPV1)-mouse model system was used. This revealed that E8^E2's function as a repressor of viral gene expression is conserved. Surprisingly, MmuPV1 E8^E2 knock out genomes did not induce warts in T-cell deficient mice. This shows for the first time that expression of E8^E2 is necessary for tumor formation in vivo independently of T cell immunity. This indicates that E8^E2 could be an interesting target for anti-viral therapy in vivo.

7.
J Gen Virol ; 101(7): 751-759, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32421493

RESUMEN

Human papillomaviruses (HPV) such as HPV16 and HPV31 encode an E8^E2 protein that acts as a repressor of viral replication and transcription. E8^E2's repression activities are mediated via the interaction with host-cell NCoR (nuclear receptor corepressor)/SMRT (silencing mediator of retinoid and thyroid receptors) corepressor complexes, which consist of NCoR, its homologue SMRT, GPS2 (G-protein pathway suppressor 2), HDAC3 (histone deacetylase 3), TBL1 (transducin b-like protein 1) and its homologue TBLR1 (TBL1-related protein 1). We now provide evidence that transcriptional repression by HPV31 E8^E2 is NCoR/SMRT-dependent but surprisingly always HDAC3-independent when analysing different HPV promoters. This is in contrast to the majority of several cellular transcription factors using NCoR/SMRT complexes whose transcriptional repression activities are both NCoR/SMRT- and HDAC3-dependent. However, NCoR/SMRT-dependent but HDAC3-independent repression has been described for specific cellular genes, suggesting that this may not be specific for HPV promoters but could be a feature of a subset of NCoR/SMRT-HDAC3 regulated genes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Interacciones Huésped-Patógeno , Papillomavirus Humano 31/fisiología , Proteínas Oncogénicas Virales/metabolismo , Transcripción Genética , Proteínas Virales/metabolismo , Línea Celular , Humanos , Co-Represor 1 de Receptor Nuclear/metabolismo , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Proteínas Represoras/metabolismo , Integración Viral , Replicación Viral
8.
PLoS Pathog ; 12(4): e1005556, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27064408

RESUMEN

Infections with high-risk human papillomaviruses (HR-HPV) such as HPV16 and 31 can lead to ano-genital and oropharyngeal cancers and HPV types from the beta genus have been implicated in the development of non-melanoma skin cancer. HPV replicate as nuclear extrachromosomal plasmids at low copy numbers in undifferentiated cells. HPV16 and 31 mutants have indicated that these viruses express an E8^E2C protein which negatively regulates genome replication. E8^E2C shares the DNA-binding and dimerization domain (E2C) with the essential viral replication activator E2 and the E8 domain replaces the replication/transcription activation domain of E2. The HR-HPV E8 domain is required for inhibiting viral transcription and the replication of the viral origin mediated by viral E1 and E2 proteins. We show now that E8^E2C also limits replication of HPV1, a mu-PV and HPV8, a beta-PV, in normal human keratinocytes. Proteomic analyses identified all NCoR/SMRT corepressor complex components (HDAC3, GPS2, NCoR, SMRT, TBL1 and TBLR1) as co-precipitating host cell proteins for HPV16 and 31 E8^E2C proteins. Co-immunoprecipitation and co-localization experiments revealed that NCoR/SMRT components interact with HPV1, 8, 16 and 31 E8^E2C proteins in an E8-dependent manner. SiRNA knock-down experiments confirm that NCoR/SMRT components are critical for both the inhibition of transcription and HPV origin replication by E8^E2C proteins. Furthermore, a dominant-negative NCoR fragment activates transcription and replication only from HPV16 and 31 wt but not from mutant genomes encoding NCoR/SMRT-binding deficient E8^E2C proteins. In summary, our data suggest that the repressive function of E8^E2C is highly conserved among HPV and that it is mediated by an E8-dependent interaction with NCoR/SMRT complexes. Our data also indicate for the first time that NCoR/SMRT complexes not only are involved in inhibiting cellular and viral transcription but also in controlling the replication of HPV origins.


Asunto(s)
Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/metabolismo , Infecciones por Papillomavirus/metabolismo , Proteínas Virales de Fusión/metabolismo , Replicación Viral/fisiología , Línea Celular , Cromatografía Liquida , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Parásitos/fisiología , Humanos , Immunoblotting , Inmunoprecipitación , Queratinocitos/metabolismo , Queratinocitos/virología , Microscopía Fluorescente , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem , Transcripción Genética , Transfección
9.
J Virol ; 89(14): 7304-13, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25948744

RESUMEN

UNLABELLED: Persistent infections with certain human papillomaviruses (HPV) such as HPV16 are a necessary risk factor for the development of anogenital and oropharyngeal cancers. HPV16 genomes replicate as low-copy-number plasmids in the nucleus of undifferentiated keratinocytes, which requires the viral E1 and E2 replication proteins. The HPV16 E8^E2C (or E8^E2) protein limits genome replication by repressing both viral transcription and the E1/E2-dependent DNA replication. How E8^E2C expression is regulated is not understood. Previous transcript analyses indicated that the spliced E8^E2C RNA is initiated at a promoter located in the E1 region upstream of the E8 gene. Deletion and mutational analyses of the E8 promoter region identify two conserved elements that are required for basal promoter activity in HPV-negative keratinocytes. In contrast, the transcriptional enhancer in the upstream regulatory region of HPV16 does not modulate basal E8 promoter activity. Cotransfection studies indicate that E8^E2C inhibits, whereas E2 weakly activates, the E8 promoter. Interestingly, the cotransfection of E1 and E2 induces the E8 promoter much more strongly than the major early promoter, and this is partially dependent upon binding of E2 to Brd4. Mutation of E8 promoter elements in the context of HPV16 genomes results in an increased genome copy number and elevated levels of viral early and late transcripts. In summary, the promoter responsible for the expression of E8^E2C is both positively and negatively regulated by viral and cellular factors, and this regulatory circuit may be crucial to maintain a low but constant copy number of HPV16 genomes in undifferentiated cells. IMPORTANCE: HPV16 replicates in differentiating epithelia and can cause cancer. How HPV16 maintains its genome in undifferentiated cells at a low but constant level is not well understood but may be relevant for the immunological escape of HPV16 in the basal layers of the infected epithelium. This study demonstrates that the expression of the viral E8^E2C protein, which is a potent inhibitor of viral replication in undifferentiated cells, is driven by a separate promoter. The E8 promoter is both positively and negatively regulated by viral proteins and thus most likely acts as a sensor and modulator of viral copy number.


Asunto(s)
Papillomavirus Humano 16/genética , Queratinocitos/virología , Regiones Promotoras Genéticas , Activación Transcripcional , Células Cultivadas , Análisis Mutacional de ADN , Humanos , Mutación Puntual , Eliminación de Secuencia
10.
J Virol ; 88(2): 937-47, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24198405

RESUMEN

Productive replication of human papillomavirus type 16 (HPV16) occurs only in differentiated keratinocyte cells. In addition to the viral E2 activator protein, HPV16 and related HPV types express transcripts coding for an E8^E2C fusion protein, which limits genome replication in undifferentiated keratinocytes. To address E8^E2C's role in productive replication of HPV16, stable keratinocyte cell lines containing wild-type (wt), E8^E2C knockout (E8-), or E8 KWK mutant (mt) genomes, in which conserved E8 residues were inactivated, were established. Copy numbers of E8- and E8 KWK mt genomes and amounts of early and late viral transcripts were greatly increased compared to those for the wt in undifferentiated keratinocytes, suggesting that HPV16 E8^E2C activities are highly dependent upon the E8 part. Upon differentiation in organotypic cultures, E8 mt genomes displayed higher early viral transcript levels, but no changes in cellular differentiation or virus-induced cellular DNA replication in suprabasal cells were observed. E8 mt genomes were amplified to higher copy numbers and showed increased L1 transcripts compared to wt genomes. Furthermore, the number of cells expressing the viral late protein E4 or L1 or amplifying viral genomes was greatly increased in E8 mt cell lines. In wild-type cells, E8^E2C transcript levels did not decrease by differentiation. Our data indicate that the E8^E2C repressor limits viral transcription and replication throughout the complete life cycle of HPV16.


Asunto(s)
Papillomavirus Humano 16/fisiología , Proteínas de Fusión Oncogénica/metabolismo , Infecciones por Papillomavirus/virología , Proteínas Represoras/metabolismo , Replicación Viral , Secuencias de Aminoácidos , Regulación hacia Abajo , Regulación Viral de la Expresión Génica , Papillomavirus Humano 16/genética , Humanos , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/genética , Proteínas Represoras/química , Proteínas Represoras/genética
11.
J Gen Virol ; 94(Pt 6): 1343-1350, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23407419

RESUMEN

A large number of studies have revealed that persistent infections with certain human papillomavirus (HPV) types are necessary for the development of invasive cancer of the cervix. Recent studies have shown that not only do the major carcinogenic HPV types 16 and 18 encode E6 and E7 oncoproteins with immortalizing activity but also the very weakly or non-carcinogenic types 53, 66, 70 and 82. Currently, it is unknown whether transcriptional differences exist between these viruses that account for carcinogenicity in vivo. Therefore, we compared for the first time the activities of the upstream regulatory regions (URRs) that drive E6 and E7 expression derived from HPV16, -18, -31, -53, -66, -70 and -82 in the absence and presence of the viral E2 transcriptional regulator. URR activities in the absence of E2 varied widely and were further modulated by the cellular background. The co-expression of homologous E2 proteins resulted in repression of the URRs of only some HPV types and this varied with cell type. Activation by E2 proteins was less cell-type dependent but differed in an HPV-type-dependent manner. However, basal URR activity, repression of the URR by E2 and transcriptional activation by E2 did not correlate with HPV carcinogenicity in vivo. In summary, our data do not support the model that the transcriptional activity of human alphapapillomavirus types correlates with epidemiological risk classification.


Asunto(s)
Alphapapillomavirus/genética , Regulación Viral de la Expresión Génica , Infecciones por Papillomavirus/virología , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Alphapapillomavirus/clasificación , Alphapapillomavirus/metabolismo , Humanos , Regiones Promotoras Genéticas , Especificidad de la Especie , Activación Transcripcional
12.
J Virol ; 85(6): 2918-26, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21191025

RESUMEN

Infections with certain human papillomaviruses (HPV), such as type 16 (HPV16), 18, or 31, are a necessary risk factor for the development of cervical cancer. Transcript analyses of several HPV revealed that the viral E2 gene encodes both the E2 regulator protein and the E8∧E2C protein, which differ in their amino termini. Up to now, functional studies have focused on HPV31 E8∧E2C and demonstrated that it is a potent repressor of viral transcription and replication. However, recent analyses of HPV16 genomes have suggested that E8∧E2C proteins may differ in their activities. Therefore, we performed a comparative analysis of E8∧E2C proteins of HPV16, -18, and -31. All E8∧E2C proteins potently inhibited HPV E6/E7 oncogene promoters, and also displayed long-distance transcriptional-repression activities. Furthermore, the expression of all E8∧E2C proteins inhibited the growth of HeLa cells. Expression of E8∧E2C proteins rapidly increased the protein levels of the E6 and E7 targets p53 and p21, consistent with the repression of the endogenous HPV18 E6/E7 promoter. All E8∧E2C proteins induced G(1) arrest more efficiently than E2 proteins and activated senescence markers. Furthermore, we demonstrate that the 31E8 domain can be functionally replaced by the KRAB repression domain derived from KOX1. The KRAB-E2C fusion protein possesses long-distance transcriptional-repression activity and inhibits the growth of HeLa cells comparably to E8∧E2C. Taken together, our results suggest that the E8∧E2C proteins of HPV16, -18, and -31 are highly conserved transcriptional repressors that inhibit the growth of HeLa cells by repression of E6/E7 transcription but do not have proapoptotic activities.


Asunto(s)
Células Epiteliales/virología , Regulación Viral de la Expresión Génica , Papillomavirus Humano 16/patogenicidad , Papillomavirus Humano 18/patogenicidad , Papillomavirus Humano 31/patogenicidad , Proteínas Oncogénicas Virales/metabolismo , Proteínas Represoras/metabolismo , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Proteínas Oncogénicas Virales/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Int J Cancer ; 121(10): 2284-92, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17583574

RESUMEN

Continuous expression of the human papillomavirus (HPV) oncoproteins E6 and E7 is required for the growth of cervical cancer cell lines. So far, only the overexpression of the wild type papillomavirus E2 protein has been shown to induce growth arrest in HPV18-positive HeLa cells by repressing E6/E7 transcription. Growth arrest by E2 requires the aminoterminal transcription activation domain in addition to the carboxyterminal DNA-binding domain. Several papillomaviruses such as the carcinogenic HPV31 express in addition to E2 an E8(wedge)E2C fusion protein in which the E8 domain, which is required for repression of replication and transcription, replaces the E2 activation domain. In this report, we demonstrate that the HPV31 E8(wedge)E2C protein is able to inhibit the growth of HeLa cells but not of HPV-negative C33A cervical cancer cells. Growth repression by E8(wedge)E2C correlates with repression of the endogenous HPV18 E6/E7 promoter and the reappearance of E6- and E7-regulated p53, pRb and p21 proteins, suggesting that E8(wedge)E2C inhibits growth by reactivating dormant tumor suppressor pathways. Growth inhibition requires an intact E8 repression domain in addition to the carboxyterminal E2C DNA binding domain. Chromatin immunoprecipitation experiments suggest that the E8 repression domain enhances binding to the HPV18 promoter sequence in vivo. In summary, our results demonstrate that the small E8 repression domain can functionally replace the large E2 transactivation domain for growth inhibition of HeLa cervical cancer cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/metabolismo , Activación Transcripcional/genética , Proteínas Virales/metabolismo , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Proteína de Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...