Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 5(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35512835

RESUMEN

The TRIM-NHL protein Meiotic P26 (Mei-P26) acts as a regulator of cell fate in Drosophila Its activity is critical for ovarian germline stem cell maintenance, differentiation of oocytes, and spermatogenesis. Mei-P26 functions as a post-transcriptional regulator of gene expression; however, the molecular details of how its NHL domain selectively recognizes and regulates its mRNA targets have remained elusive. Here, we present the crystal structure of the Mei-P26 NHL domain at 1.6 Å resolution and identify key amino acids that confer substrate specificity and distinguish Mei-P26 from closely related TRIM-NHL proteins. Furthermore, we identify mRNA targets of Mei-P26 in cultured Drosophila cells and show that Mei-P26 can act as either a repressor or activator of gene expression on different RNA targets. Our work reveals the molecular basis of RNA recognition by Mei-P26 and the fundamental functional differences between otherwise very similar TRIM-NHL proteins.


Asunto(s)
Proteínas de Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Masculino , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo
2.
RNA Biol ; 19(1): 560-574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35438042

RESUMEN

The small ribosomal subunit protein Rps15/uS19 is involved in early nucleolar ribosome biogenesis and subsequent nuclear export of pre-40S particles to the cytoplasm. In addition, the C-terminal tail of Rps15 was suggested to play a role in mature ribosomes, namely during translation elongation. Here, we show that Rps15 not only functions in nucleolar ribosome assembly but also in cytoplasmic pre-40S maturation, which is indicated by a strong genetic interaction between Rps15 and the 40S assembly factor Ltv1. Specifically, mutations either in the globular or C-terminal domain of Rps15 when combined with the non-essential ltv1 null allele are lethal or display a strong growth defect. However, not only rps15 ltv1 double mutants but also single rps15 C-terminal deletion mutants exhibit an accumulation of the 20S pre-rRNA in the cytoplasm, indicative of a cytoplasmic pre-40S maturation defect. Since in pre-40S particles, the C-terminal tail of Rps15 is positioned between assembly factors Rio2 and Tsr1, we further tested whether Tsr1 is genetically linked to Rps15, which indeed could be demonstrated. Thus, the integrity of the Rps15 C-terminal tail plays an important role during late pre-40S maturation, perhaps in a quality control step to ensure that only 40S ribosomal subunits with functional Rps15 C-terminal tail can efficiently enter translation. As mutations in the C-terminal tail of human RPS15 have been observed in connection with chronic lymphocytic leukaemia, it is possible that apart from defects in translation, an impaired late pre-40S maturation step in the cytoplasm could also be a reason for this disease.


Asunto(s)
Proteínas Ribosómicas , Proteínas de Saccharomyces cerevisiae , Humanos , Biosíntesis de Proteínas , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell ; 75(6): 1256-1269.e7, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31378463

RESUMEN

Eukaryotic ribosome biogenesis involves RNA folding and processing that depend on assembly factors and small nucleolar RNAs (snoRNAs). The 90S (SSU-processome) is the earliest pre-ribosome structurally analyzed, which was suggested to assemble stepwise along the growing pre-rRNA from 5' > 3', but this directionality may not be accurate. Here, by analyzing the structure of a series of 90S assembly intermediates from Chaetomium thermophilum, we discover a reverse order of 18S rRNA subdomain incorporation. Large parts of the 18S rRNA 3' and central domains assemble first into the 90S before the 5' domain is integrated. This final incorporation depends on a contact between a heterotrimer Enp2-Bfr2-Lcp5 recruited to the flexible 5' domain and Kre33, which reconstitutes the Kre33-Enp-Brf2-Lcp5 module on the compacted 90S. Keeping the 5' domain temporarily segregated from the 90S scaffold could provide extra time to complete the multifaceted 5' domain folding, which depends on a distinct set of snoRNAs and processing factors.


Asunto(s)
Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Conformación de Ácido Nucleico , ARN de Hongos/metabolismo , ARN Ribosómico 18S/metabolismo , Ribosomas/metabolismo , Chaetomium/genética , Proteínas Fúngicas/genética , ARN de Hongos/genética , ARN Ribosómico 18S/genética , Ribosomas/genética
4.
Nucleic Acids Res ; 47(5): 2276-2288, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30590805

RESUMEN

In Drosophila, female development is governed by a single RNA-binding protein, Sex-lethal (Sxl), that controls the expression of key factors involved in dosage compensation, germline homeostasis and the establishment of female morphology and behaviour. Sxl expression in female flies is maintained by an auto-regulatory, positive feedback loop with Sxl controlling splicing of its own mRNA. Until now, it remained unclear how males prevent accidental triggering of the Sxl expression cascade and protect themselves against runaway protein production. Here, we identify the protein Sister-of-Sex-lethal (Ssx) as an inhibitor of Sxl auto-regulatory splicing. Sxl and Ssx have a comparable RNA-binding specificity and compete for binding to RNA regulatory elements present in the Sxl transcript. In cultured Drosophila cells, Sxl-induced changes to alternative splicing can be reverted by the expression of Ssx. Moreover, in adult male flies ablation of the ssx gene results in a low level of productive Sxl mRNA splicing and Sxl protein production in isolated, clonal cell populations. In sum, this demonstrates that Ssx safeguards male animals against Sxl protein production to reinforce a stable, male-specific gene expression pattern.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Caracteres Sexuales , Animales , Células Cultivadas , Proteínas de Drosophila/biosíntesis , Exones/genética , Femenino , Perfilación de la Expresión Génica , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/biosíntesis , Secuencias Reguladoras de Ácido Ribonucleico/genética
5.
RNA ; 24(2): 149-158, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29089381

RESUMEN

The RNA-binding protein Sex-lethal (Sxl) is an important post-transcriptional regulator of sex determination and dosage compensation in female Drosophila To prevent the assembly of the MSL dosage compensation complex in female flies, Sxl acts as a repressor of male-specific lethal-2 (msl-2) mRNA translation. It uses two distinct and mutually reinforcing blocks to translation that operate on the 5' and 3' untranslated regions (UTRs) of msl-2 mRNA, respectively. While 5' UTR-mediated translational control involves an upstream open reading frame, 3' UTR-mediated regulation strictly requires the co-repressor protein Upstream of N-ras (Unr), which is recruited to the transcript by Sxl. We have identified the protein Sister-of-Sex-lethal (Ssx) as a novel repressor of translation with Sxl-like activity. Both proteins have a comparable RNA-binding specificity and can associate with uracil-rich RNA regulatory elements present in msl-2 mRNA. Moreover, both repress translation when bound to the 5' UTR of msl-2 However, Ssx is inactive in 3' UTR-mediated regulation, as it cannot engage the co-repressor protein Unr. The difference in activity maps to the first RNA-recognition motif (RRM) of Ssx. Conversion of three amino acids within this domain into their Sxl counterpart results in a gain of function and repression via the 3' UTR, allowing detailed insights into the evolutionary origin of the two proteins and into the molecular requirements of an important translation regulatory pathway.


Asunto(s)
Proteínas de Drosophila/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Uracilo/análisis
6.
Nucleic Acids Res ; 46(3): 1441-1456, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29237037

RESUMEN

Eukaryotic ribosome biogenesis is a complex dynamic process which requires the action of numerous ribosome assembly factors. Among them, the eukaryotic Rio protein family members (Rio1, Rio2 and Rio3) belong to an ancient conserved atypical protein kinase/ ATPase family required for the maturation of the small ribosomal subunit (SSU). Recent structure-function analyses suggested an ATPase-dependent role of the Rio proteins to regulate their dynamic association with the nascent pre-SSU. However, the evolutionary origin of this feature and the detailed molecular mechanism that allows controlled activation of the catalytic activity remained to be determined. In this work we provide functional evidence showing a conserved role of the archaeal Rio proteins for the synthesis of the SSU in archaea. Moreover, we unravel a conserved RNA-dependent regulation of the Rio ATPases, which in the case of Rio2 involves, at least, helix 30 of the SSU rRNA and the P-loop lysine within the shared RIO domain. Together, our study suggests a ribosomal RNA-mediated regulatory mechanism enabling the appropriate stimulation of Rio2 catalytic activity and subsequent release of Rio2 from the nascent pre-40S particle. Based on our findings we propose a unified release mechanism for the Rio proteins.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , Proteínas Arqueales/genética , Haloferax volcanii/enzimología , Proteínas Serina-Treonina Quinasas/genética , ARN Ribosómico 18S/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Evolución Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Haloferax volcanii/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Science ; 338(6107): 666-71, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23118189

RESUMEN

Ribosomal proteins are synthesized in the cytoplasm, before nuclear import and assembly with ribosomal RNA (rRNA). Little is known about coordination of nucleocytoplasmic transport with ribosome assembly. Here, we identify a transport adaptor, symportin 1 (Syo1), that facilitates synchronized coimport of the two 5S-rRNA binding proteins Rpl5 and Rpl11. In vitro studies revealed that Syo1 concomitantly binds Rpl5-Rpl11 and furthermore recruits the import receptor Kap104. The Syo1-Rpl5-Rpl11 import complex is released from Kap104 by RanGTP and can be directly transferred onto the 5S rRNA. Syo1 can shuttle back to the cytoplasm by interaction with phenylalanine-glycine nucleoporins. X-ray crystallography uncovered how the α-solenoid symportin accommodates the Rpl5 amino terminus, normally bound to 5S rRNA, in an extended groove. Symportin-mediated coimport of Rpl5-Rpl11 could ensure coordinated and stoichiometric incorporation of these proteins into pre-60S ribosomes.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Chaetomium/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , ARN de Hongos/metabolismo , ARN Ribosómico 5S/metabolismo , Proteínas de Unión al ARN/química , Proteínas Ribosómicas/química , Proteínas de Saccharomyces cerevisiae/química , beta Carioferinas/metabolismo
8.
EMBO J ; 22(6): 1370-80, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12628929

RESUMEN

Recent reports have increased our knowledge of the consecutive steps during 60S ribosome biogenesis substantially, but 40S subunit formation is less well understood. Here, we investigate the maturation of nucleolar 90S pre-ribosomes into cytoplasmic 40S pre-ribosomes. During the transition from 90S to 40S particles, the majority of non-ribosomal proteins (approximately 30 species) dissociate, and significantly fewer factors associate with 40S pre-ribosomes. Notably, some of these components are part of both early 90S and intermediate 40S pre-particles in the nucleolus (e.g. Enp1p, Dim1p and Rrp12p), whereas others (e.g. Rio2p and Nob1p) are found mainly on late cytoplasmic pre-40S subunits. Finally, temperature-sensitive mutants mapping either in earlier (enp1-1) or later (rio2-1) components exhibit defects in the formation and nuclear export of pre-40S subunits. Our data provide an initial biochemical map of the pre-40S ribosomal subunit on its path from the nucleolus to the cytoplasm. This pathway involves fewer changes in composition than seen during 60S biogenesis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas de Choque Térmico/metabolismo , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Mutación , Precursores del ARN/aislamiento & purificación , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
9.
J Biol Chem ; 278(6): 4072-81, 2003 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-12446671

RESUMEN

Formation and nuclear export of 60 S pre-ribosomes requires many factors including the heterodimeric Noc1-Noc2 and Noc2-Noc3 complexes. Here, we report another Noc complex with a specific role in 40 S subunit biogenesis. This complex consists of Noc4p, which exhibits the conserved Noc domain and is homologous to Noc1p, and Nop14p, a nucleolar protein with a role in 40 S subunit formation. Moreover, noc4 thermosensitive mutants are defective in 40 S biogenesis, and rRNA processing is inhibited at early cleavage sites A(0), A(1), and A(2). Using a fluorescence-based visual assay for 40 S subunit export, we observe a strong nucleolar accumulation of the Rps2p-green fluorescent protein reporter in noc4 ts mutants, but 60 S subunit export was normal. Thus, Noc4p and Nop14p form a novel Noc complex with a specific role in nucleolar 40 S subunit formation and subsequent export to the cytoplasm.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cromatografía de Afinidad , Cartilla de ADN , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Plásmidos , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
10.
Mol Cell ; 10(1): 105-15, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12150911

RESUMEN

We report the characterization of early pre-ribosomal particles. Twelve TAP-tagged components each showed nucleolar localization, sedimented at approximately 90S on sucrose gradients, and coprecipitated both the 35S pre-rRNA and the U3 snoRNA. Thirty-five non-ribosomal proteins were coprecipitated, including proteins associated with U3 (Nop56p, Nop58p, Sof1p, Rrp9, Dhr1p, Imp3p, Imp4p, and Mpp10p) and other factors required for 18S rRNA synthesis (Nop14p, Bms1p, and Krr1p). Mutations in components of the 90S pre-ribosomes impaired 40S subunit assembly and export. Strikingly, few components of recently characterized pre-60S ribosomes were identified in the 90S pre-ribosomes. We conclude that the 40S synthesis machinery predominately associates with the 35S pre-rRNA factors, whereas factors required for 60S subunit synthesis largely bind later, showing an unexpected dichotomy in binding.


Asunto(s)
Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Levaduras/citología , Levaduras/genética , Northern Blotting , Western Blotting , Centrifugación por Gradiente de Densidad , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sustancias Macromoleculares , Peso Molecular , Subunidades de Proteína , Ribosomas/genética
11.
J Cell Biol ; 157(6): 941-51, 2002 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-12058014

RESUMEN

Many analyses have examined subnucleolar structures in eukaryotic cells, but the relationship between morphological structures, pre-rRNA processing, and ribosomal particle assembly has remained unclear. Using a visual assay for export of the 60S ribosomal subunit, we isolated a ts-lethal mutation, rix9-1, which causes nucleolar accumulation of an Rpl25p-eGFP reporter construct. The mutation results in a single amino acid substitution (F176S) in Rlp7p, an essential nucleolar protein related to ribosomal protein Rpl7p. The rix9-1 (rlp7-1) mutation blocks the late pre-RNA cleavage at site C2 in ITS2, which separates the precursors to the 5.8S and 25S rRNAs. Consistent with this, synthesis of the mature 5.8S and 25S rRNAs was blocked in the rlp7-1 strain at nonpermissive temperature, whereas 18S rRNA synthesis continued. Moreover, pre-rRNA containing ITS2 accumulates in the nucleolus of rix9-1 cells as revealed by in situ hybridization. Finally, tagged Rlp7p was shown to associate with a pre-60S particle, and fluorescence microscopy and immuno-EM localized Rlp7p to a subregion of the nucleolus, which could be the granular component (GC). All together, these data suggest that pre-rRNA cleavage at site C2 specifically requires Rlp7p and occurs within pre-60S particles located in the GC region of the nucleolus.


Asunto(s)
Nucléolo Celular/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Levaduras/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Nucléolo Celular/ultraestructura , Secuencia Conservada , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/ultraestructura , Procesamiento Postranscripcional del ARN , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/ultraestructura , Alineación de Secuencia , Temperatura , Levaduras/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...