Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 11596, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463943

RESUMEN

Epstein-Barr virus (EBV) downregulates immune surface markers to avoid immune recognition. Pomalidomide (Pom) was previously shown to increase immune surface marker expression in EBV-infected tumor cells. We explored the mechanism by which Pom leads to these effects in EBV-infected cells. Pom increased B7-2/CD86 mRNA, protein, and surface expression in EBV-infected cells but this was virtually eliminated in EBV-infected cells made resistant to Pom-induced cytostatic effects. This indicates that Pom initiates the upregulation of these markers by interacting with its target, cereblon. Interestingly, Pom increased the proinflammatory cytokines IP-10 and MIP-1∝/ß in EBV infected cells, supporting a possible role for the phosphoinositide 3-kinase (PI3K)/AKT pathway in Pom's effects. Idelalisib, an inhibitor of the delta subunit of PI3 Kinase, blocked AKT-Ser phosphorylation and Pom-induced B7-2 surface expression. PU.1 is a downstream target for AKT that is expressed in EBV-infected cells. Pom treatment led to an increase in PU.1 binding to the B7-2 promoter based on ChIP analysis. Thus, our data indicates Pom acts through cereblon leading to degradation of Ikaros and activation of the PI3K/AKT/PU.1 pathway resulting in upregulation of B7-2 mRNA and protein expression. The increased immune recognition in addition to the increases in proinflammatory cytokines upon Pom treatment suggests Pom may be useful in the treatment of EBV-positive lymphomas.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma , Humanos , Herpesvirus Humano 4/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación hacia Arriba , Citocinas/metabolismo , ARN Mensajero/metabolismo
2.
Trends Immunol ; 43(6): 426-437, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35527182

RESUMEN

Zebrafish are relatively new to the field of host-pathogen interactions, although they have been a valuable vertebrate model for decades in developmental biology and neuroscience. Transparent zebrafish larvae have most components of the human innate immune system, and adult zebrafish also produce cells of the adaptive immune system. Recent discoveries using zebrafish infection models include mechanisms of pathogen survival and host cell sensing of microbes. These discoveries were enabled by zebrafish technology, which is constantly evolving and providing new opportunities for immunobiology research. Recent tools include CRISPR/Cas9 mutagenesis, in vivo biotinylation, and genetically encoded biosensors. We argue that the zebrafish model - which remains underutilized in immunology - provides fertile ground for a new understanding of host-microbe interactions in a transparent host.


Asunto(s)
Interacciones Microbiota-Huesped , Pez Cebra , Animales , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Humanos , Larva
3.
PLoS Pathog ; 17(1): e1009091, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411730

RESUMEN

Pomalidomide (Pom) is an immunomodulatory drug that has efficacy against Kaposi's sarcoma, a tumor caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Pom also induces direct cytotoxicity in primary effusion lymphoma (PEL), a B-cell malignancy caused by KSHV, in part through downregulation of IRF4, cMyc, and CK1α as a result of its interaction with cereblon, a cellular E3 ubiquitin ligase. Additionally, Pom can reverse KSHV-induced downregulation of MHCI and co-stimulatory immune surface molecules ICAM-1 and B7-2 on PELs. Here, we show for the first time that Pom-induced increases in ICAM-1 and B7-2 on PEL cells lead to an increase in both T-cell activation and NK-mediated cytotoxicity against PEL. The increase in T-cell activation can be prevented by blocking ICAM-1 and/or B7-2 on the PEL cell surface, suggesting that both ICAM-1 and B7-2 are important for T-cell co-stimulation by PELs. To gain mechanistic insights into Pom's effects on surface markers, we generated Pom-resistant (PomR) PEL cells, which showed about 90% reduction in cereblon protein level and only minimal changes in IRF4 and cMyc upon Pom treatment. Pom no longer upregulated ICAM-1 and B7-2 on the surface of PomR cells, nor did it increase T-cell and NK-cell activation. Cereblon-knockout cells behaved similarly to the pomR cells upon Pom-treatment, suggesting that Pom's interaction with cereblon is necessary for these effects. Further mechanistic studies revealed PI3K signaling pathway as being important for Pom-induced increases in these molecules. These observations provide a rationale for the study of Pom as therapy in treating PEL and other KSHV-associated tumors.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antígeno B7-2/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Linfoma de Efusión Primaria/inmunología , Linfocitos T/inmunología , Talidomida/análogos & derivados , Antígeno B7-2/genética , Humanos , Molécula 1 de Adhesión Intercelular/genética , Linfoma de Efusión Primaria/tratamiento farmacológico , Linfoma de Efusión Primaria/patología , Transducción de Señal , Linfocitos T/efectos de los fármacos , Talidomida/farmacología , Células Tumorales Cultivadas
4.
Oncoimmunology ; 8(2): e1546544, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30713808

RESUMEN

Most chronic viruses evade T-cell and natural killer (NK) immunity through downregulation of immune surface markers. Previously we showed that Pomalidomide (Pom) increases surface expression of major histocompatibility complex class I (MHC-I) in Kaposi sarcoma-associated herpesvirus-infected latent and lytic cells and restores ICAM-1 and B7-2 in latent cells. We explored the ability of Pom to increase immune surface marker expression in cells infected by other chronic viruses, including human T-cell leukemia virus type-1 (HTLV-1), Epstein-Barr virus (EBV), human papilloma virus (HPV), Merkel cell polyoma virus (MCV), and human immunodeficiency virus type-1 (HIV-1). Pom increased MHC-1, ICAM-1, and B7-2/CD86 in immortalized T-cell lines productively infected with HTLV-1 and also significantly increased their susceptibility to NK cell-mediated cytotoxicity. Pom enhancement of MHC-I and ICAM-1 in primary cells infected with HTLV-1 was abrogated by knockout of HTLV-1 orf-1. Pom increased expression of ICAM-1, B7-2 and MHC class I polypeptide related sequence A (MICA) surface expression in the EBV-infected Daudi cells and increased their T-cell activation and susceptibility to NK cells. Moreover, Pom increased expression of certain of these surface markers on Akata, Raji, and EBV lymphoblastic cell lines. The increased expression of immune surface markers in these virus-infected lines was generally associated with a decrease in IRF4 expression. By contrast, Pom treatment of HPV, MCV and HIV-1 infected cells did not increase these immune surface markers. Pom and related drugs may be clinically beneficial for the treatment of HTLV-1 and EBV-induced tumors by rendering infected cells more susceptible to both innate and adaptive host immune responses.

5.
Mol Cancer ; 14: 189, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26546412

RESUMEN

BACKGROUND: Temozolomide (TMZ) is an oral DNA-alkylating agent used for treating patients with glioblastoma. However, therapeutic benefits of TMZ can be compromised by the expression of O6-methylguanine methyltransferase (MGMT) in tumor tissue. Here we used MGMT-expressing glioblastoma stem cells (GSC) lines as a model for investigating the molecular mechanism underlying TMZ resistance, while aiming to explore a new treatment strategy designed to possibly overcome resistance to the clinically relevant dose of TMZ (35 µM). METHODS: MGMT-expressing GSC cultures are resistant to TMZ, and IC50 (half maximal inhibitory concentration) is estimated at around 500 µM. Clonogenic GSC surviving 500 µM TMZ (GSC-500 µM TMZ), were isolated. Molecular signatures were identified via comparative analysis of expression microarray against parental GSC (GSC-parental). The recombinant protein of top downregulated signature was used as a single agent or in combination with TMZ, for evaluating therapeutic effects of treatment of GSC. RESULTS: The molecular signatures characterized an activation of protective stress responses in GSC-500 µM TMZ, mainly including biotransformation/detoxification of xenobiotics, blocked endoplasmic reticulum stress-mediated apoptosis, epithelial-to-mesenchymal transition (EMT), and inhibited growth/differentiation. Bone morphogenetic protein 7 (BMP7) was identified as the top down-regulated gene in GSC-500 µM TMZ. Although augmenting BMP7 signaling in GSC by exogenous BMP7 treatment did not effectively stop GSC growth, it markedly sensitized both GSC-500 µM TMZ and GSC-parental to 35 µM TMZ treatment, leading to loss of self-renewal and migration capacity. BMP7 treatment induced senescence of GSC cultures and suppressed mRNA expression of CD133, MGMT, and ATP-binding cassette drug efflux transporters (ABCB1, ABCG2), as well as reconfigured transcriptional profiles in GSC by downregulating genes associated with EMT/migration/invasion, stemness, inflammation/immune response, and cell proliferation/tumorigenesis. BMP7 treatment significantly prolonged survival time of animals intracranially inoculated with GSC when compared to those untreated or treated with TMZ alone (p = 0.0017), whereas combination of two agents further extended animal survival compared to BMP7 alone (p = 0.0489). CONCLUSIONS: These data support the view that reduced endogenous BMP7 expression/signaling in GSC may contribute to maintained stemness, EMT, and chemoresistant phenotype, suggesting that BMP7 treatment may provide a novel strategy in combination with TMZ for an effective treatment of glioblastoma exhibiting unmethylated MGMT.


Asunto(s)
Proteína Morfogenética Ósea 7/metabolismo , Metilasas de Modificación del ADN/metabolismo , Dacarbazina/análogos & derivados , Glioblastoma/enzimología , Glioblastoma/metabolismo , Guanina/análogos & derivados , Células Madre Neoplásicas/enzimología , Antineoplásicos Alquilantes , Proteína Morfogenética Ósea 7/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Metilasas de Modificación del ADN/genética , Dacarbazina/farmacología , Resistencia a Antineoplásicos/genética , Glioblastoma/genética , Guanina/metabolismo , Humanos , Células Madre Neoplásicas/metabolismo , Temozolomida , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA