Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104805

RESUMEN

Sortilin has been positively correlated with vascular disorders in humans. No study has yet evaluated the possible direct effect of sortilin on vascular function. We used pharmacological and genetic approaches coupled with study of murine and human samples to unravel the mechanisms recruited by sortilin in the vascular system. Sortilin induced endothelial dysfunction of mesenteric arteries through NADPH oxidase 2 (NOX2) isoform activation, dysfunction that was prevented by knockdown of acid sphingomyelinase (ASMase) or sphingosine kinase 1. In vivo, recombinant sortilin administration induced arterial hypertension in WT mice. In contrast, genetic deletion of sphingosine-1-phosphate receptor 3 (S1P3) and gp91phox/NOX2 resulted in preservation of endothelial function and blood pressure homeostasis after 14 days of systemic sortilin administration. Translating these research findings into the clinical setting, we detected elevated sortilin levels in hypertensive patients with endothelial dysfunction. Furthermore, in a population-based cohort of 270 subjects, we showed increased plasma ASMase activity and increased plasma levels of sortilin, S1P, and soluble NOX2-derived peptide (sNOX2-dp) in hypertensive subjects, and the increase was more pronounced in hypertensive subjects with uncontrolled blood pressure. Our studies reveal what we believe is a previously unrecognized role of sortilin in the impairment of vascular function and in blood pressure homeostasis and suggest the potential of sortilin and its mediators as biomarkers for the prediction of vascular dysfunction and high blood pressure.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Endotelio Vascular/metabolismo , Hipertensión/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingomielina Fosfodiesterasa/metabolismo , Esfingosina/análogos & derivados , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Endotelio Vascular/lesiones , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipertensión/genética , Hipertensión/fisiopatología , Lisofosfolípidos/genética , Ratones , Ratones Noqueados , Esfingomielina Fosfodiesterasa/genética , Esfingosina/genética , Esfingosina/metabolismo
2.
Life (Basel) ; 11(3)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801080

RESUMEN

Recent scientific literature has investigated the cardiovascular implications of COVID-19. The mechanisms of cardiovascular damage seem to involve the protein angiotensin-converting enzyme 2 (ACE2), to which severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) binds to penetrate cells and other mechanisms, most of which are still under study. Cardiovascular sequelae of COVID-19 include heart failure, cardiomyopathy, acute coronary syndrome, arrhythmias, and venous thromboembolism. This article aims to collect scientific evidence by exploiting PubMed, Scopus, and Pedro databases to highlight the cardiovascular complications of COVID-19 and to define the physiotherapy treatment recommended for these patients. Exercise training (ET), an important part of cardiac rehabilitation, is a powerful tool in physiotherapy, capable of inducing significant changes in the cardiovascular system and functional in the recovery of endothelial dysfunction and for the containment of thromboembolic complications. In conclusion, due to the wide variety of possible exercise programs that can be obtained by combining intensity, duration, and speed in various ways, and by adjusting the program based on continuous patient monitoring, exercise training is well suited to the treatment of post-COVID patients with an impaired cardiovascular system of various degrees.

3.
Life (Basel) ; 11(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467601

RESUMEN

Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of aging expresses itself in age-related diseases. Aging is in fact a primary risk factor for many diseases and in particular for cardiovascular diseases and its derived morbidity and mortality. Here we highlight the role of oxidative stress in age-related cardiovascular aging and diseases. We take into consideration the molecular mechanisms, the structural and functional alterations, and the diseases accompanied to the cardiovascular aging process.

4.
J Am Heart Assoc ; 9(5): e014923, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32078787

RESUMEN

Background High blood pressure (BP) has long been recognized as a major health threat and, particularly, a major risk factor for stroke, cardiovascular disease, and end-organ damage. However, the identification of a novel, alternative, integrative approach for the control of BP and cardiovascular protection is still needed. Methods and Results Sixty-nine uncontrolled hypertension patients, aged 40 to 68 years, on antihypertensive medication were enrolled in 2 double-blind studies. Forty-five were randomized to placebo or a new nutraceutical combination named AkP05, and BP, endothelial function, and circulating nitric oxide were assessed before and at the end of 4 weeks of treatment. Twenty-four patients were randomized to diuretic or AkP05 for 4 weeks and underwent a cardiopulmonary exercise test to evaluate the effects of AkP05 on functional capacity of the cardiovascular, pulmonary, and muscular systems. Vascular and molecular studies were undertaken on mice to characterize the action of the single compounds contained in the AkP05 nutraceutical combination. AkP05 supplementation reduced BP, improved endothelial function, and increased nitric oxide release; cardiopulmonary exercise test revealed that AkP05 increased maximum O2 uptake, stress tolerance, and maximal power output. In mice, AkP05 reduced BP and improved endothelial function, evoking increased nitric oxide release through the PKCα/Akt/endothelial nitric oxide synthase pathway and reducing reactive oxygen species production via NADPH-oxidase inhibition. These effects were mediated by synergism of the single compounds of AkP05. Conclusions This is the first study reporting positive effects of a nutraceutical combination on the vasculature and exercise tolerance in treated hypertensive patients. Our findings suggest that AkP05 may be used as an adjunct for the improvement of cardiovascular protection and to better control BP in uncontrolled hypertension.


Asunto(s)
Suplementos Dietéticos , Tolerancia al Ejercicio/fisiología , Hipertensión/fisiopatología , Hipertensión/terapia , Óxido Nítrico/sangre , Preparaciones de Plantas/uso terapéutico , Adulto , Anciano , Animales , Bacopa , Camellia sinensis , Método Doble Ciego , Prueba de Esfuerzo , Femenino , Ginkgo biloba , Humanos , Hipertensión/sangre , Masculino , Ratones , Persona de Mediana Edad , Fosfatidilserinas/uso terapéutico , Fitoterapia , Especies Reactivas de Oxígeno/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...