Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 24(7): 205, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789211

RESUMEN

Over the past decades, increasing interests took place in the realm of drug delivery systems. Beyond treating intestinal diseases such as inflammatory bowel disease, colon targeting can provide possible applications for oral administration of proteins as well as vaccines due to the lower enzymatic activity in the distal part of GIT. To date, many strategies are employed to reach the colon. This article encompasses different biomaterials tested as film coatings and highlights appropriate formulations for colonic drug delivery. A comparison of different films was made to display the most interesting drug release profiles. These films contained ethylcellulose, as a thermoplastic polymer, blended with an aqueous shellac ammonium salt solution. Different blend ratios were selected as well for thin films as for coated mini-tablets, mainly varying as follows: (80:20); (75:25); (60:40). The impact of blend ratio and coating level was examined as well as the addition of natural polysaccharide "inulin" to target the colon. In vitro drug release was measured in 0.1 M HCl for 2 h followed by phosphate buffer saline pH 6.8 to simulate gastric and intestinal fluids, respectively. Coated mini-tablets were exposed to fresh fecal samples of humans in order to simulate roughly colonic content. Several formulations were able to fully protect theophylline as a model drug up to 8 h in the upper GIT, but allowing for prolonged release kinetics in the colon. These very interesting colonic release profiles were related to the amount of the natural polysaccharide added into the system.


Asunto(s)
Colon , Inulina , Humanos , Inulina/metabolismo , Colon/metabolismo , Sistemas de Liberación de Medicamentos , Polisacáridos/química , Comprimidos/metabolismo , Agua/metabolismo
2.
Appl Environ Microbiol ; 65(10): 4470-4, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10508077

RESUMEN

A total of five hybridoma cell lines that produced monoclonal antibodies against the components of the hemolysin BL (HBL) enterotoxin complex and sphingomyelinase produced by Bacillus cereus were established and characterized. Monoclonal antibody 2A3 was specific for the B component, antibodies 1A12 and 8B12 were specific for the L(2) component, and antibody 1C2 was specific for the L(1) protein of the HBL enterotoxin complex. No cross-reactivity with other proteins produced by different strains of B. cereus was observed for monoclonal antibodies 2A3, 1A12, and 8B12, whereas antibody 1C2 cross-reacted with an uncharacterized protein of approximately 93 kDa and with a 39-kDa protein, which possibly represents one component of the nonhemolytic enterotoxin complex. Antibody 2A12 finally showed a distinct reactivity with B. cereus sphingomyelinase. The monoclonal antibodies developed in this study were also successfully applied in indirect enzyme immunoassays for the characterization of the enterotoxic activity of B. cereus strains. About 50% of the strains tested were capable of producing the HBL enterotoxin complex, and it could be demonstrated that all strains producing HBL were also highly cytotoxic.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Bacillus cereus/patogenicidad , Proteínas Bacterianas/inmunología , Proteínas Hemolisinas/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...