Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14054, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640745

RESUMEN

Congenital myasthenic syndromes (CMS) are a clinically and genetically heterogeneous group of rare diseases due to mutations in neuromuscular junction (NMJ) protein-coding genes. Until now, many mutations encoding postsynaptic proteins as Agrin, MuSK and LRP4 have been identified as responsible for increasingly complex CMS phenotypes. The majority of mutations identified in LRP4 gene causes bone diseases including CLS and sclerosteosis-2 and rare cases of CMS with mutations in LRP4 gene has been described so far. In the French cohort of CMS patients, we identified a novel LRP4 homozygous missense mutation (c.1820A > G; p.Thy607Cys) within the ß1 propeller domain in a patient presenting CMS symptoms, including muscle weakness, fluctuating fatigability and a decrement in compound muscle action potential in spinal accessory nerves, associated with congenital agenesis of the hands and feet and renal malformation. Mechanistic expression studies show a significant decrease of AChR aggregation in cultured patient myotubes, as well as altered in vitro binding of agrin and Wnt11 ligands to the mutated ß1 propeller domain of LRP4 explaining the dual phenotype characterized clinically and electoneuromyographically in the patient. These results expand the LRP4 mutations spectrum associated with a previously undescribed clinical association involving impaired neuromuscular transmission and limb deformities and highlighting the critical role of a yet poorly described domain of LRP4 at the NMJ. This study raises the question of the frequency of this rare neuromuscular form and the future diagnosis and management of these cases.


Asunto(s)
Síndromes Miasténicos Congénitos , Humanos , Síndromes Miasténicos Congénitos/genética , Agrina/genética , Mutación , Pie , Proteínas Relacionadas con Receptor de LDL/genética
2.
Sci Signal ; 15(734): eabg4982, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35580169

RESUMEN

The development of the neuromuscular junction (NMJ) requires dynamic trans-synaptic coordination orchestrated by secreted factors, including Wnt family morphogens. To investigate how these synaptic cues in NMJ development are transduced, particularly in the regulation of acetylcholine receptor (AChR) accumulation in the postsynaptic membrane, we explored the function of Van Gogh-like protein 2 (Vangl2), a core component of Wnt planar cell polarity signaling. We found that conditional, muscle-specific ablation of Vangl2 in mice reproduced the NMJ differentiation defects seen in mice with global Vangl2 deletion. These alterations persisted into adulthood and led to NMJ disassembly, impaired neurotransmission, and deficits in motor function. Vangl2 and the muscle-specific receptor tyrosine kinase MuSK were functionally associated in Wnt signaling in the muscle. Vangl2 bound to and promoted the signaling activity of MuSK in response to Wnt11. The loss of Vangl2 impaired RhoA activation in cultured mouse myotubes and caused dispersed, rather than clustered, organization of AChRs at the postsynaptic or muscle cell side of NMJs in vivo. Our results identify Vangl2 as a key player of the core complex of molecules shaping neuromuscular synapses and thus shed light on the molecular mechanisms underlying NMJ assembly.


Asunto(s)
Polaridad Celular , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Quinasas , Animales , Ácidos Grasos Monoinsaturados , Ratones , Fibras Musculares Esqueléticas/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Sinapsis/genética , Sinapsis/metabolismo
4.
Neurol Genet ; 6(6): e534, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33659639

RESUMEN

OBJECTIVE: To report the identification of 2 new homozygous recessive mutations in the synaptotagmin 2 (SYT2) gene as the genetic cause of severe and early presynaptic forms of congenital myasthenic syndromes (CMSs). METHODS: Next-generation sequencing identified new homozygous intronic and frameshift mutations in the SYT2 gene as a likely cause of presynaptic CMS. We describe the clinical and electromyographic patient phenotypes, perform ex vivo splicing analyses to characterize the effect of the intronic mutation on exon splicing, and analyze the functional impact of this variation at the neuromuscular junction (NMJ). RESULTS: The 2 infants presented a similar clinical phenotype evoking first a congenital myopathy characterized by muscle weakness and hypotonia. Next-generation sequencing allowed to the identification of 1 homozygous intronic mutation c.465+1G>A in patient 1 and another homozygous frameshift mutation c.328_331dup in patient 2, located respectively in the 5' splice donor site of SYT2 intron 4 and in exon 3. Functional studies of the intronic mutation validated the abolition of the splice donor site of exon 4 leading to its skipping. In-frame skipping of exon 4 that encodes part of the C2A calcium-binding domain of SYT2 is associated with a loss-of-function effect resulting in a decrease of neurotransmitter release and severe pre- and postsynaptic NMJ defects. CONCLUSIONS: This study identifies new homozygous recessive SYT2 mutations as the underlying cause of severe and early presynaptic form of CMS expanding the genetic spectrum of recessive SYT2-related CMS associated with defects in neurotransmitter release.

5.
J Neurol ; 264(8): 1791-1803, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28712002

RESUMEN

Mutations in GFPT1 (glutamine-fructose-6-phosphate transaminase 1), a gene encoding an enzyme involved in glycosylation of ubiquitous proteins, cause a limb-girdle congenital myasthenic syndrome (LG-CMS) with tubular aggregates (TAs) characterized predominantly by affection of the proximal skeletal muscles and presence of highly organized and remodeled sarcoplasmic tubules in patients' muscle biopsies. We report here the first long-term clinical follow-up of 11 French individuals suffering from LG-CMS with TAs due to GFPT1 mutations, of which nine are new. Our retrospective clinical evaluation stresses an evolution toward a myopathic weakness that occurs concomitantly to ineffectiveness of usual CMS treatments. Analysis of neuromuscular biopsies from three unrelated individuals demonstrates that the maintenance of neuromuscular junctions (NMJs) is dramatically impaired with loss of post-synaptic junctional folds and evidence of denervation-reinnervation processes affecting the three main NMJ components. Moreover, molecular analyses of the human muscle biopsies confirm glycosylation defects of proteins with reduced O-glycosylation and show reduced sialylation of transmembrane proteins in extra-junctional area. Altogether, these results pave the way for understanding the etiology of this rare neuromuscular disorder that may be considered as a "tubular aggregates myopathy with synaptopathy".


Asunto(s)
Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/patología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Unión Neuromuscular/patología , Adolescente , Adulto , Anciano , Femenino , Estudios de Seguimiento , Glicosilación , Humanos , Persona de Mediana Edad , Músculo Esquelético/enzimología , Músculo Esquelético/inervación , Músculo Esquelético/patología , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/enzimología , Miopatías Estructurales Congénitas/tratamiento farmacológico , Miopatías Estructurales Congénitas/enzimología , Unión Neuromuscular/enzimología , Estudios Prospectivos , Estudios Retrospectivos , Adulto Joven
6.
Development ; 144(9): 1712-1724, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28348167

RESUMEN

Understanding the developmental steps that shape formation of the neuromuscular junction (NMJ) connecting motoneurons to skeletal muscle fibers is crucial. Wnt morphogens are key players in the formation of this specialized peripheral synapse, but their individual and collaborative functions and downstream pathways remain poorly understood at the NMJ. Here, we demonstrate through Wnt4 and Wnt11 gain-of-function studies in cell culture or in mice that Wnts enhance acetylcholine receptor (AChR) clustering and motor axon outgrowth. By contrast, loss of Wnt11 or Wnt-dependent signaling in vivo decreases AChR clustering and motor nerve terminal branching. Both Wnt4 and Wnt11 stimulate AChR mRNA levels and AChR clustering downstream of activation of the ß-catenin pathway. Strikingly, Wnt4 and Wnt11 co-immunoprecipitate with Vangl2, a core component of the planar cell polarity (PCP) pathway, which accumulates at embryonic NMJs. Moreover, mice bearing a Vangl2 loss-of-function mutation (loop-tail) exhibit fewer AChR clusters and overgrowth of motor axons bypassing AChR clusters. Together, our results provide genetic and biochemical evidence that Wnt4 and Wnt11 cooperatively contribute to mammalian NMJ formation through activation of both the canonical and Vangl2-dependent core PCP pathways.


Asunto(s)
Unión Neuromuscular/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Proteína Wnt4/metabolismo , Animales , Axones/metabolismo , Polaridad Celular , Embrión de Mamíferos/metabolismo , Espacio Extracelular/metabolismo , Ratones Endogámicos C57BL , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Receptores Colinérgicos/metabolismo , Sinapsis/metabolismo
7.
Am J Hum Genet ; 99(3): 753-761, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27569547

RESUMEN

The neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMSs), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A). We identified 11 recessive mutations in SLC5A7 that were associated with a spectrum of severe muscle weakness ranging from a lethal antenatal form of arthrogryposis and severe hypotonia to a neonatal form of CMS with episodic apnea and a favorable prognosis when well managed at the clinical level. As expected given the critical role of CHT for multisystemic cholinergic neurotransmission, autonomic dysfunctions were reported in the antenatal form and cognitive impairment was noticed in half of the persons with the neonatal form. The missense mutations induced a near complete loss of function of CHT activity in cell models. At the human NMJ, a delay in synaptic maturation and an altered maintenance were observed in the antenatal and neonatal forms, respectively. Increased synaptic expression of butyrylcholinesterase was also observed, exposing the dysfunction of cholinergic metabolism when CHT is deficient in vivo. This work broadens the clinical spectrum of human diseases resulting from reduced CHT activity and highlights the complexity of cholinergic metabolism at the synapse.


Asunto(s)
Apnea/genética , Mutación/genética , Miastenia Gravis/genética , Terminales Presinápticos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Adolescente , Apnea/complicaciones , Apnea/metabolismo , Apnea/patología , Artrogriposis/complicaciones , Artrogriposis/genética , Butirilcolinesterasa/metabolismo , Niño , Preescolar , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Análisis Mutacional de ADN , Exoma/genética , Femenino , Genes Recesivos/genética , Células HEK293 , Heterocigoto , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Hipotonía Muscular/genética , Debilidad Muscular/complicaciones , Debilidad Muscular/genética , Debilidad Muscular/patología , Mutación Missense/genética , Miastenia Gravis/complicaciones , Miastenia Gravis/metabolismo , Miastenia Gravis/patología , Unión Neuromuscular/enzimología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Terminales Presinápticos/patología , Simportadores/deficiencia , Transmisión Sináptica
8.
J Neurosci ; 35(12): 4926-41, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25810523

RESUMEN

The muscle-specific kinase MuSK is one of the key molecules orchestrating neuromuscular junction (NMJ) formation. MuSK interacts with the Wnt morphogens, through its Frizzled-like domain (cysteine-rich domain [CRD]). Dysfunction of MuSK CRD in patients has been recently associated with the onset of myasthenia, common neuromuscular disorders mainly characterized by fatigable muscle weakness. However, the physiological role of Wnt-MuSK interaction in NMJ formation and function remains to be elucidated. Here, we demonstrate that the CRD deletion of MuSK in mice caused profound defects of both muscle prepatterning, the first step of NMJ formation, and synapse differentiation associated with a drastic deficit in AChR clusters and excessive growth of motor axons that bypass AChR clusters. Moreover, adult MuSKΔCRD mice developed signs of congenital myasthenia, including severe NMJs dismantlement, muscle weakness, and fatigability. We also report, for the first time, the beneficial effects of lithium chloride, a reversible inhibitor of the glycogen synthase kinase-3, that rescued NMJ defects in MuSKΔCRD mice and therefore constitutes a novel therapeutic reagent for the treatment of neuromuscular disorders linked to Wnt-MuSK signaling pathway deficiency. Together, our data reveal that MuSK CRD is critical for NMJ formation and plays an unsuspected role in NMJ maintenance in adulthood.


Asunto(s)
Glicoproteínas/química , Debilidad Muscular/tratamiento farmacológico , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/fisiología , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/fisiología , Acetilcolinesterasa/metabolismo , Animales , Animales Recién Nacidos , Fatiga/genética , Fatiga/fisiopatología , Femenino , Fuerza de la Mano/fisiología , Péptidos y Proteínas de Señalización Intracelular , Cloruro de Litio/farmacología , Cloruro de Litio/uso terapéutico , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Debilidad Muscular/genética , Debilidad Muscular/fisiopatología , Mutación , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/fisiopatología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/ultraestructura , Embarazo , Cultivo Primario de Células , Proteínas Tirosina Quinasas Receptoras/genética , Receptores Colinérgicos/metabolismo
9.
PLoS One ; 7(1): e29976, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22253844

RESUMEN

Neuromuscular junction (NMJ) formation requires the highly coordinated communication of several reciprocal signaling processes between motoneurons and their muscle targets. Identification of the early, spatially restricted cues in target recognition at the NMJ is still poorly documented, especially in mammals. Wnt signaling is one of the key pathways regulating synaptic connectivity. Here, we report that Wnt4 contributes to the formation of vertebrate NMJ in vivo. Results from a microarray screen and quantitative RT-PCR demonstrate that Wnt4 expression is regulated during muscle cell differentiation in vitro and muscle development in vivo, being highly expressed when the first synaptic contacts are formed and subsequently downregulated. Analysis of the mouse Wnt4⁻/⁻ NMJ phenotype reveals profound innervation defects including motor axons overgrowing and bypassing AChR aggregates with 30% of AChR clusters being unapposed by nerve terminals. In addition, loss of Wnt4 function results in a 35% decrease of the number of prepatterned AChR clusters while Wnt4 overexpression in cultured myotubes increases the number of AChR clusters demonstrating that Wnt4 directly affects postsynaptic differentiation. In contrast, muscle structure and the localization of several synaptic proteins including acetylcholinesterase, MuSK and rapsyn are not perturbed in the Wnt4 mutant. Finally, we identify MuSK as a Wnt4 receptor. Wnt4 not only interacts with MuSK ectodomain but also mediates MuSK activation. Taken together our data reveal a new role for Wnt4 in mammalian NMJ formation that could be mediated by MuSK, a key receptor in synaptogenesis.


Asunto(s)
Unión Neuromuscular/embriología , Vertebrados/embriología , Proteína Wnt4/metabolismo , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo/genética , Células COS , Chlorocebus aethiops , Análisis por Conglomerados , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Células Musculares/metabolismo , Células Musculares/patología , Músculos/embriología , Músculos/inervación , Músculos/patología , Músculos/ultraestructura , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Fosforilación , Unión Proteica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/metabolismo , Vertebrados/genética , Proteína Wnt4/deficiencia , Proteína Wnt4/genética
10.
Dev Neurobiol ; 72(4): 600-14, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21780304

RESUMEN

Precise navigation of axons to their targets is critical for establishing proper neuronal networks during development. Axon elongation, whereby axons extend far beyond the site of initiation to reach their target cells, is an essential step in this process, but the precise molecular pathways that regulate axon growth remain uncharacterized. Here we show that 14-3-3/14-3-3ς proteins-adaptor proteins that modulate diverse cellular processes including cytoskeletal dynamics-play a critical role in Xenopus retinal ganglion cell (RGC) axon elongation in vivo and in vitro. We have identified the expression of 14-3-3/14-3-3ς transcripts and proteins in retinal growth cones, with higher levels of expression occurring during the phase of rapid pathway extension. Competitive inhibition of 14-3-3/14-3-3ς by expression of a genetically encoded peptide, R18, in RGCs resulted in a marked decrease in the length of the initial retinotectal projection in vivo and a corresponding decrease in axon elongation rate in vitro (30-40%). Furthermore, 14-3-3/14-3-3ς (R1) co-localized with Xenopus actin depolymerizing factor (ADF)/cofilin (XAC) in RGC growth cones. Inhibition of 14-3-3/14-3-3ς function with either R18 or morpholinos reduced the level of inactive pXAC and increased the sensitivity to collapse by the repulsive cue, Slit2. Collectively, these results demonstrate that14-3-3/14-3-3ς participates in the regulation of retinal axon elongation, in part by modulating XAC activity.


Asunto(s)
Proteínas 14-3-3/metabolismo , Axones/metabolismo , Destrina/metabolismo , Neurogénesis/fisiología , Retina/crecimiento & desarrollo , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Conos de Crecimiento/metabolismo , Hibridación in Situ , Retina/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus
11.
Dev Biol ; 359(2): 303-20, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21884692

RESUMEN

Adult skeletal muscles in vertebrates are composed of different types of myofibers endowed with distinct metabolic and contraction speed properties. Genesis of this fiber-type heterogeneity during development remains poorly known, at least in mammals. Six1 and Six4 homeoproteins of the Six/sine oculis family are expressed throughout muscle development in mice, and Six1 protein is enriched in the nuclei of adult fast-twitch myofibers. Furthermore, Six1/Six4 proteins are known to control the early activation of fast-type muscle genes in myocytes present in the mouse somitic myotome. Using double Six1:Six4 mutants (SixdKO) to dissect in vivo the genesis of muscle fiber-type heterogeneity, we analyzed here the phenotype of the dorsal/epaxial muscles remaining in SixdKO. We show by electron microscopy analysis that the absence of these homeoproteins precludes normal sarcomeric organization of the myofiber leading to a dystrophic aspect, and by immunohistochemistry experiments a deficiency in synaptogenesis. Affymetrix transcriptome analysis of the muscles remaining in E18.5 SixdKO identifies a major role for these homeoproteins in the control of genes that are specifically activated in the adult fast/glycolytic myofibers, particularly those controlling Ca(2+) homeostasis. Absence of Six1 and Six4 leads to the development of dorsal myofibers lacking expression of fast-type muscle genes, and mainly expressing a slow-type muscle program. The absence of restriction of the slow-type program during the fetal period in SixdKO back muscles is associated with a decreased HDAC4 protein level, and subcellular relocalization of the transcription repressor Sox6. Six genes thus behave as essential global regulators of muscle gene expression, as well as a central switch to drive the skeletal muscle fast phenotype during fetal development.


Asunto(s)
Proteínas de Drosophila/genética , Embrión de Mamíferos/metabolismo , Proteínas de Homeodominio/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Animales , Northern Blotting , Células Cultivadas , Proteínas de Drosophila/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/ultraestructura , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Desarrollo de Músculos/genética , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/ultraestructura , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/citología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/ultraestructura , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcriptoma
13.
Neuron ; 65(3): 341-57, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20159448

RESUMEN

Regulated protein degradation via the ubiquitin-proteasome system (UPS) plays a central role in building synaptic connections, yet little is known about either which specific UPS components are involved or UPS targets in neurons. We report that inhibiting the UPS in developing Xenopus retinal ganglion cells (RGCs) with a dominant-negative ubiquitin mutant decreases terminal branching in the tectum but does not affect long-range navigation to the tectum. We identify Nedd4 as a prominently expressed E3 ligase in RGC axon growth cones and show that disrupting its function severely inhibits terminal branching. We further demonstrate that PTEN, a negative regulator of the PI3K pathway, is a key downstream target of Nedd4: not only does Nedd4 regulate PTEN levels in RGC growth cones, but also, the decrease of PTEN rescues the branching defect caused by Nedd4 inhibition. Together our data suggest that Nedd4-regulated PTEN is a key regulator of terminal arborization in vivo.


Asunto(s)
Axones/fisiología , Regulación hacia Abajo/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Conos de Crecimiento/fisiología , Fosfohidrolasa PTEN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Arginina/genética , Línea Celular Transformada , Regulación hacia Abajo/genética , Electroporación/métodos , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunoprecipitación/métodos , Lisina/genética , Microscopía Confocal/métodos , Mutación/genética , Ubiquitina-Proteína Ligasas Nedd4 , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Retina/citología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Colículos Superiores/citología , Técnicas de Cultivo de Tejidos , Transducción Genética/métodos , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Xenopus , Proteínas de Xenopus
14.
J Neurosci ; 30(1): 13-23, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20053883

RESUMEN

CollagenQ (ColQ) plays an important structural role at vertebrate neuromuscular junctions (NMJs) by anchoring and accumulating acetylcholinesterase (AChE) in the extracellular matrix (ECM). Moreover, ColQ interacts with perlecan/dystroglycan and the muscle-specific receptor tyrosine kinase (MuSK), key molecules in the NMJ formation. MuSK promotes acetylcholine receptor (AChR) clustering in a process mediated by rapsyn, a cytoplasmic protein that stimulates AChR packing in clusters and regulates synaptic gene transcription. Here, we investigated a regulatory role for ColQ by comparing the clustering and expression of synaptic proteins in wild type and ColQ-deficient muscle cells in culture and at NMJ. We show first that AChR clusters are smaller and more densely packed in the absence of ColQ both in vitro and in vivo. Second, we find that like AChRs and rapsyn, MuSK mRNA levels are increased in cultured cells but not in muscles lacking ColQ. However, membrane-bound MuSK is decreased both in vitro and in vivo suggesting that ColQ controls MuSK sorting or stabilization in the muscle membrane. In line with this, our data show that activation of the MuSK signaling pathway is altered in the absence of ColQ leading to (1) perturbation of AChR clustering and/or beta-AChR subunit phosphorylation and (2) modifications of AChR mRNA level due to the lack of ColQ-MuSK interaction. Together, our results demonstrate that ColQ, in addition to its structural role, has important regulatory functions at the synapse by controlling AChR clustering and synaptic gene expression through its interaction with MuSK.


Asunto(s)
Acetilcolinesterasa/fisiología , Diferenciación Celular/fisiología , Colágeno/fisiología , Unión Neuromuscular/fisiología , Terminales Presinápticos/fisiología , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Células COS , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Colágeno/química , Colágeno/metabolismo , Ratones , Ratones Noqueados , Unión Neuromuscular/citología , Ratas , Agregación de Receptores/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/fisiología , Sinapsis/fisiología
15.
Neural Dev ; 4: 8, 2009 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-19254368

RESUMEN

BACKGROUND: Translation in axons is required for growth cone chemotropic responses to many guidance cues. Although locally synthesized proteins are beginning to be identified, how specific mRNAs are selected for translation remains unclear. Control of poly(A) tail length by cytoplasmic polyadenylation element (CPE) binding protein 1 (CPEB1) is a conserved mechanism for mRNA-specific translational regulation that could be involved in regulating translation in axons. RESULTS: We show that cytoplasmic polyadenylation is required in Xenopus retinal ganglion cell (RGC) growth cones for translation-dependent, but not translation-independent, chemotropic responses in vitro, and that inhibition of CPE binding through dominant-negative interference severely reduces axon outgrowth in vivo. CPEB1 mRNA transcripts are present at low levels in RGCs but, surprisingly, CPEB1 protein was not detected in eye or brain tissue, and CPEB1 loss-of-function does not affect chemotropic responses or pathfinding in vivo. UV cross-linking experiments suggest that CPE-binding proteins other than CPEB1 in the retina regulate retinal axon development. CONCLUSION: These results indicate that cytoplasmic polyadenylation and CPE-mediated translational regulation are involved in retinal axon development, but that CPEB1 may not be the key regulator of polyadenylation in the developing retina.


Asunto(s)
Axones/metabolismo , Poliadenilación/genética , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus/crecimiento & desarrollo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Secuencia de Bases , Citoplasma , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Hibridación in Situ , Datos de Secuencia Molecular , Plásmidos , Poliadenilación/fisiología , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Células Ganglionares de la Retina/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus/embriología
16.
Development ; 135(2): 333-42, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18077591

RESUMEN

Sphingosine 1-phosphate (S1P), a lysophospholipid, plays an important chemotactic role in the migration of lymphocytes and germ cells, and is known to regulate aspects of central nervous system development such as neurogenesis and neuronal migration. Its role in axon guidance, however, has not been examined. We show that sphingosine kinase 1, an enzyme that generates S1P, is expressed in areas surrounding the Xenopus retinal axon pathway, and that gain or loss of S1P function in vivo causes errors in axon navigation. Chemotropic assays reveal that S1P elicits fast repulsive responses in retinal growth cones. These responses require heparan sulfate, are sensitive to inhibitors of proteasomal degradation, and involve RhoA and LIM kinase activation. Together, the data identify downstream components that mediate S1P-induced growth cone responses and implicate S1P signalling in axon guidance.


Asunto(s)
Axones/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Vías Visuales/embriología , Vías Visuales/metabolismo , Xenopus laevis/embriología , Animales , Axones/efectos de los fármacos , Axones/enzimología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/enzimología , Activación Enzimática/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/enzimología , Conos de Crecimiento/patología , Heparitina Sulfato/metabolismo , Humanos , Quinasas Lim/metabolismo , Lisofosfolípidos/farmacología , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteasoma , Receptores de Lisoesfingolípidos/metabolismo , Retina/efectos de los fármacos , Retina/enzimología , Retina/patología , Transducción de Señal/efectos de los fármacos , Esfingosina/metabolismo , Esfingosina/farmacología , Vías Visuales/efectos de los fármacos , Vías Visuales/enzimología , Proteína de Unión al GTP rhoA/metabolismo
17.
J Biol Chem ; 281(51): 39693-8, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17062560

RESUMEN

Slit is a large secreted protein that provides important guidance cues in the developing nervous system and in other organs. Signaling by Slit requires two receptors, Robo transmembrane proteins and heparan sulfate (HS) proteoglycans. How HS controls Slit-Robo signaling is unclear. Here we show that the second leucine-rich repeat domain (D2) of Slit, which mediates binding to Robo receptors, also contains a functionally important binding site for heparin, a highly sulfated variant of HS. Heparin markedly enhances the affinity of the Slit-Robo interaction in a solid-phase binding assay. Analytical gel filtration chromatography demonstrates that Slit D2 associates with a soluble Robo fragment and a heparin-derived oligosaccharide to form a ternary complex. Retinal growth cone collapse triggered by Slit D2 requires cell surface HS or exogenously added heparin. Mutation of conserved basic residues in the C-terminal cap region of Slit D2 reduces heparin binding and abolishes biological activity. We conclude that heparin/HS is an integral component of the minimal Slit-Robo signaling complex and serves to stabilize the relatively weak Slit-Robo interaction.


Asunto(s)
Heparitina Sulfato/química , Proteínas del Tejido Nervioso/fisiología , Receptores Inmunológicos/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Conos de Crecimiento/química , Conos de Crecimiento/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Oligosacáridos/química , Unión Proteica , Estructura Terciaria de Proteína , Receptores Inmunológicos/química , Retina/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas Roundabout
18.
Bioessays ; 27(11): 1129-35, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16237673

RESUMEN

The muscle-specific kinase MuSK is part of an agrin receptor complex that stimulates tyrosine phosphorylation and drives clustering of acetylcholine receptors (AChRs) in the postsynaptic membrane at the vertebrate neuromuscular junction (NMJ). MuSK also regulates synaptic gene transcription in subsynaptic nuclei. Over the past few years, decisive progress has been made in the identification of MuSK effectors, helping to understand its function in the formation of the NMJ. Similarly to AChR, MuSK and several of its partners are the target of mutations responsible for diseases of the NMJ, such as congenital myasthenic syndromes. This minireview will focus on the multiple MuSK effectors so far identified that place MuSK at the center of a multifunctional signaling complex involved in the organization of the NMJ and associated disorders.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/metabolismo , Sinapsis/metabolismo , Animales , Fosfotirosina/metabolismo , Unión Proteica , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Colinérgicos/genética , Receptores Colinérgicos/inmunología , Transducción de Señal , Sinapsis/genética , Sinapsis/inmunología
20.
Proc Natl Acad Sci U S A ; 101(52): 18189-94, 2004 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-15604144

RESUMEN

The muscle-specific receptor tyrosine kinase (MuSK) is part of a receptor complex, activated by neural agrin, that orchestrates the differentiation of the neuromuscular junction (NMJ). To gain insight into the function of the MuSK complex, we have developed a proteomic approach to identify new MuSK partners. MS analysis of MuSK crosslink products from postsynaptic membranes of the Torpedo electrocytes identified the adaptor protein 14-3-3 gamma. The 14-3-3 gamma protein was found localized at the adult rat NMJ. Cotransfection experiments in COS-7 cells showed that MuSK codistributed with the 14-3-3 gamma protein at the plasma membrane. Furthermore, 14-3-3 gamma was copurified by affinity chromatography with MuSK from transfected COS-7 cells and myotubes. The 14-3-3 gamma protein did not colocalize with agrin-elicited acetylcholine receptor (AChR) aggregates in cultured myotubes, suggesting that it is not involved in AChR clustering. Expression of 14-3-3 gamma specifically repressed the transcription of several synaptic reporter genes in cultured myotubes. This repression was potentiated by MuSK expression. Moreover, the expression of 14-3-3 gamma in muscle fibers in vivo caused both the repression of synaptic genes transcription and morphological perturbations of the NMJ. Our data extend the notion that, apart from its well documented role in AChR clustering, the MuSK complex might also be involved in the regulation of synaptic gene expression at the NMJ.


Asunto(s)
Proteínas 14-3-3/fisiología , Unión Neuromuscular/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/metabolismo , Sinapsis/patología , Transcripción Genética , Proteínas 14-3-3/metabolismo , Agrina/metabolismo , Animales , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Cromatografía , Reactivos de Enlaces Cruzados , Electrólitos/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Microscopía Fluorescente , Músculos/metabolismo , Neuronas/metabolismo , Unión Proteica , Proteómica , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo , Torpedo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...