Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 107(4-5): 293-305, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33598827

RESUMEN

KEY MESSAGE: This study focused on the key regulatory function of Physcomitrium patens GRAS12 gene underlying an increasing plant complexity, an important step in plant terrestrialization and the evolutionary history of life. The miR171-GRAS module has been identified as a key player in meristem maintenance in angiosperms. PpGRAS12 is a member of the GRAS family and a validated target for miR171 in Physcomitrium (Physcomitrella) patens. Here we show a regulatory function of miR171 at the gametophytic vegetative growth stage and targeted deletion of the PpGRAS12 gene adversely affects sporophyte production since fewer sporophytes were produced in ΔPpGRAS12 knockout lines compared to wild type moss. Furthermore, highly specific and distinct growth arrests were observed in inducible PpGRAS12 overexpression lines at the protonema stage. Prominent phenotypic aberrations including the formation of multiple apical meristems at the gametophytic vegetative stage in response to elevated PpGRAS12 transcript levels were discovered via scanning electron microscopy. The production of multiple buds in the PpGRAS12 overexpression lines similar to ΔPpCLV1a/1b disruption mutants is accompanied by an upregulation of PpCLE and downregulation of PpCLV1, PpAPB, PpNOG1, PpDEK1, PpRPK2 suggesting that PpGRAS12 acts upstream of these genes and negatively regulates the proposed pathway to specify simplex meristem formation. As CLV signaling pathway components are not present in the chlorophytic or charophytic algae and arose with the earliest land plants, we identified a key regulatory function of PpGRAS12 underlying an increasing plant complexity, an important step in plant terrestrialization and the evolutionary history of life.


Asunto(s)
Bryopsida/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Proteínas de Plantas/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/metabolismo , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , MicroARNs/genética , MicroARNs/metabolismo , Microscopía Electrónica de Rastreo , Mutación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
2.
Int J Dev Biol ; 57(6-8): 553-64, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24166438

RESUMEN

To comprehensively understand the major processes in plant biology, it is necessary to study a diverse set of species that represent the complexity of plants. This research will help to comprehend common conserved mechanisms and principles, as well as to elucidate those mechanisms that are specific to a particular plant clade. Thereby, we will gain knowledge about the invention and loss of mechanisms and their biological impact causing the distinct specifications throughout the plant kingdom. Since the establishment of transgenic plants, these studies concentrate on the elucidation of gene functions applying an increasing repertoire of molecular techniques. In the last two decades, the moss Physcomitrella patens joined the established set of plant models based on its evolutionary position bridging unicellular algae and vascular plants and a number of specific features alleviating gene function analysis. Here, we want to provide an overview of the specific features of P. patens making it an interesting model for many research fields in plant biology, to present the major achievements in P. patens genetic engineering, and to introduce common techniques to scientists who intend to use P. patens as a model in their research activities.


Asunto(s)
Bryopsida/genética , Técnicas Genéticas , Plantas Modificadas Genéticamente , Evolución Biológica , Biología Computacional , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Técnicas de Transferencia de Gen , Genes de Plantas , Ingeniería Genética/métodos , Genoma de Planta , MicroARNs/metabolismo , Fenotipo , Filogenia , Interferencia de ARN , Recombinación Genética , Semillas , Transgenes
3.
Plant Cell ; 25(10): 3926-43, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24096342

RESUMEN

In vascular plants, the chloroplast NAD(P)H dehydrogenase complex (NDH-C) is assembled from five distinct subcomplexes, the membrane-spanning (subM) and the luminal (subL) subcomplexes, as well as subA, subB, and subE. The assembly process itself is poorly understood. Vascular plant genomes code for two related intrinsic thylakoid proteins, photosynthesis-affected mutant68 (PAM68), a photosystem II assembly factor, and photosynthesis-affected mutant68-like (PAM68L). As we show here, inactivation of Arabidopsis thaliana PAM68L in the pam68l-1 mutant identifies PAM68L as an NDH-C assembly factor. The mutant lacks functional NDH holocomplexes and accumulates three distinct NDH-C assembly intermediates (subB, subM, and subA+L), which are also found in mutants defective in subB assembly (ndf5) or subM expression (chlororespiratory reduction4-3 mutant). NDH-C assembly in the cyanobacterium Synechocystis sp PCC 6803 and the moss Physcomitrella patens does not require PAM68 proteins, as demonstrated by the analysis of knockout lines for the single-copy PAM68 genes in these species. We conclude that PAM68L mediates the attachment of subB- and subM-containing intermediates to a complex that contains subA and subL. The evolutionary appearance of subL and PAM68L during the transition from mosses like P. patens to flowering plants suggests that the associated increase in the complexity of the NDH-C might have been facilitated by the recruitment of evolutionarily novel assembly factors like PAM68L.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimología , NADPH Deshidrogenasa/metabolismo , Fotosíntesis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Bryopsida/metabolismo , Proteínas de Cloroplastos/genética , NADPH Deshidrogenasa/genética , Filogenia , Synechocystis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...