Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 35(1): 108946, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826889

RESUMEN

Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal brain maturation are less understood. Here, we identify the miR-29 family to be strikingly induced during the late stages of brain maturation. Brain maturation is associated with a transient, postnatal period of de novo non-CG (CH) DNA methylation mediated by DNMT3A. We examine whether an important function of miR-29 during brain maturation is to restrict the period of CH methylation via its targeting of Dnmt3a. Deletion of miR-29 in the brain, or knockin mutations preventing miR-29 to specifically target Dnmt3a, result in increased DNMT3A expression, higher CH methylation, and repression of genes associated with neuronal activity and neuropsychiatric disorders. These mouse models also develop neurological deficits and premature lethality. Our results identify an essential role for miR-29 in restricting CH methylation in the brain and illustrate the importance of CH methylation regulation for normal brain maturation.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Metilación de ADN/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Conducta Animal , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , MicroARNs/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Neuronas/metabolismo , Neuronas/patología , Convulsiones/genética , Convulsiones/patología , Transducción de Señal , Sinapsis/metabolismo , Regulación hacia Arriba/genética
2.
Neuron ; 107(5): 874-890.e8, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32589877

RESUMEN

The maturation of the mammalian brain occurs after birth, and this stage of neuronal development is frequently impaired in neurological disorders, such as autism and schizophrenia. However, the mechanisms that regulate postnatal brain maturation are poorly defined. By purifying neuronal subpopulations across brain development in mice, we identify a postnatal switch in the transcriptional regulatory circuits that operates in the maturing mammalian brain. We show that this developmental transition includes the formation of hundreds of cell-type-specific neuronal enhancers that appear to be modulated by neuronal activity. Once selected, these enhancers are active throughout adulthood, suggesting that their formation in early life shapes neuronal identity and regulates mature brain function.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Regulación de la Expresión Génica/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Metilación de ADN/fisiología , Ratones , Transcripción Genética/fisiología
3.
Mol Cell ; 77(2): 294-309.e9, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31784358

RESUMEN

Mutations in the methyl-DNA-binding repressor protein MeCP2 cause the devastating neurodevelopmental disorder Rett syndrome. It has been challenging to understand how MeCP2 regulates transcription because MeCP2 binds broadly across the genome and MeCP2 mutations are associated with widespread small-magnitude changes in neuronal gene expression. We demonstrate here that MeCP2 represses nascent RNA transcription of highly methylated long genes in the brain through its interaction with the NCoR co-repressor complex. By measuring the rates of transcriptional initiation and elongation directly in the brain, we find that MeCP2 has no measurable effect on transcriptional elongation, but instead represses the rate at which Pol II initiates transcription of highly methylated long genes. These findings suggest a new model of MeCP2 function in which MeCP2 binds broadly across highly methylated regions of DNA, but acts at transcription start sites to attenuate transcriptional initiation.


Asunto(s)
Metilación de ADN/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteínas Represoras/genética , Transcripción Genética/genética , Animales , Encéfalo/fisiología , ADN/genética , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Neuronas/fisiología , ARN/genética , Síndrome de Rett/genética
4.
Elife ; 82019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31545165

RESUMEN

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Biología Molecular/métodos , Neuronas/efectos de los fármacos , Neurofisiología/métodos , Proteínas Recombinantes/biosíntesis , Somatostatina/metabolismo , Virus/genética , Animales , Animales Modificados Genéticamente , Corteza Cerebral/fisiología , Genes Reguladores , Vectores Genéticos , Interneuronas/fisiología , Ratones , Proteínas Recombinantes/genética
5.
Neuron ; 99(3): 525-539.e10, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30033152

RESUMEN

Sensory experience influences the establishment of neural connectivity through molecular mechanisms that remain unclear. Here, we employ single-nucleus RNA sequencing to investigate the contribution of sensory-driven gene expression to synaptic refinement in the dorsal lateral geniculate nucleus of the thalamus, a region of the brain that processes visual information. We find that visual experience induces the expression of the cytokine receptor Fn14 in excitatory thalamocortical neurons. By combining electrophysiological and structural techniques, we show that Fn14 is dispensable for early phases of refinement mediated by spontaneous activity but that Fn14 is essential for refinement during a later, experience-dependent period of development. Refinement deficits in mice lacking Fn14 are associated with functionally weaker and structurally smaller retinogeniculate inputs, indicating that Fn14 mediates both functional and anatomical rearrangements in response to sensory experience. These findings identify Fn14 as a molecular link between sensory-driven gene expression and vision-sensitive refinement in the brain.


Asunto(s)
Cuerpos Geniculados/metabolismo , Células Ganglionares de la Retina/metabolismo , Receptor de TWEAK/biosíntesis , Percepción Visual/fisiología , Animales , Femenino , Expresión Génica , Cuerpos Geniculados/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Tracto Óptico/crecimiento & desarrollo , Tracto Óptico/metabolismo , Retina/metabolismo , Receptor de TWEAK/genética
6.
Cell ; 171(5): 1151-1164.e16, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29056337

RESUMEN

In mammals, the environment plays a critical role in promoting the final steps in neuronal development during the early postnatal period. While epigenetic factors are thought to contribute to this process, the underlying molecular mechanisms remain poorly understood. Here, we show that in the brain during early life, the DNA methyltransferase DNMT3A transiently binds across transcribed regions of lowly expressed genes, and its binding specifies the pattern of DNA methylation at CA sequences (mCA) within these genes. We find that DNMT3A occupancy and mCA deposition within the transcribed regions of genes is negatively regulated by gene transcription and may be modified by early-life experience. Once deposited, mCA is bound by the methyl-DNA-binding protein MECP2 and functions in a rheostat-like manner to fine-tune the cell-type-specific transcription of genes that are critical for brain function.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Epigénesis Genética , Neuronas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , ADN Metiltransferasa 3A , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteína 2 de Unión a Metil-CpG , Ratones , Transcripción Genética , Activación Transcripcional
7.
Genome Biol ; 18(1): 94, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28521766

RESUMEN

BACKGROUND: Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. RESULTS: We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. CONCLUSIONS: We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.


Asunto(s)
Arabidopsis/genética , ADN de Plantas/genética , Epigénesis Genética , Genoma de Planta , Histonas/genética , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/química , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN de Plantas/metabolismo , Histonas/metabolismo , Proteínas de Plantas/metabolismo , Transcripción Genética
8.
Proc Natl Acad Sci U S A ; 113(32): 9111-6, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457936

RESUMEN

In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.


Asunto(s)
Metilación de ADN , Evolución Molecular , Magnoliopsida/genética , ADN (Citosina-5-)-Metiltransferasas/fisiología , Histonas/metabolismo
10.
Nature ; 522(7554): 89-93, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25762136

RESUMEN

Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that has been proposed to function as a transcriptional repressor, but despite numerous mouse studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 protein regulates transcription. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain.


Asunto(s)
Metilación de ADN/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mutación/genética , Síndrome de Rett/genética , Animales , Secuencia de Bases , Encéfalo/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo
11.
Nat Commun ; 5: 5795, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25503965

RESUMEN

The Microrchidia (Morc) family of GHKL ATPases are present in a wide variety of prokaryotic and eukaryotic organisms but are of largely unknown function. Genetic screens in Arabidopsis thaliana have identified Morc genes as important repressors of transposons and other DNA-methylated and silent genes. MORC1-deficient mice were previously found to display male-specific germ cell loss and infertility. Here we show that MORC1 is responsible for transposon repression in the male germline in a pattern that is similar to that observed for germ cells deficient for the DNA methyltransferase homologue DNMT3L. Morc1 mutants show highly localized defects in the establishment of DNA methylation at specific classes of transposons, and this is associated with failed transposon silencing at these sites. Our results identify MORC1 as an important new regulator of the epigenetic landscape of male germ cells during the period of global de novo methylation.


Asunto(s)
Elementos Transponibles de ADN , Epigénesis Genética , Proteínas Nucleares/genética , Espermatozoides/metabolismo , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Embrión de Mamíferos , Masculino , Ratones , Ratones Transgénicos , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Espermatozoides/citología , Espermatozoides/crecimiento & desarrollo , Factores de Tiempo
12.
Proc Natl Acad Sci U S A ; 111(49): 17666-71, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25425661

RESUMEN

DNA methylation in Arabidopsis thaliana is maintained by at least four different enzymes: DNA methyltransferase1 (MET1), chromomethylase3 (CMT3), domains rearranged methyltransferase2 (DRM2), and chromomethylase2 (CMT2). However, DNA methylation is established exclusively by the enzyme DRM2, which acts in the RNA-directed DNA methylation (RdDM) pathway. Some RdDM components belong to gene families and have partially redundant functions, such as the endoribonucleases dicer-like 2, 3, and 4, and involved in de novo2 (IDN2) interactors IDN2-like 1 and 2. Traditional mutagenesis screens usually fail to detect genes if they are redundant, as the loss of one gene can be compensated by a related gene. In an effort to circumvent this issue, we used coexpression data to identify closely related genes that are coregulated with genes in the RdDM pathway. Here we report the discovery of two redundant proteins, SNF2-ring-helicase-like1 and -2 (FRG1 and -2) that are putative chromatin modifiers belonging to the SNF2 family of helicase-like proteins. Analysis of genome-wide bisulfite sequencing shows that simultaneous mutations of FRG1 and -2 cause defects in methylation at specific RdDM targeted loci. We also show that FRG1 physically associates with Su(var)3-9-related SUVR2, a known RdDM component, in vivo. Combined, our results identify FRG1 and FRG2 as previously unidentified components of the RdDM machinery.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cromatina/química , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN , ARN de Planta/química , Arabidopsis/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Mutagénesis , Mutación , Interferencia de ARN , ARN Interferente Pequeño/genética
13.
Nat Neurosci ; 17(10): 1330-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25195102

RESUMEN

Experience-dependent gene transcription is required for nervous system development and function. However, the DNA regulatory elements that control this program of gene expression are not well defined. Here we characterize the enhancers that function across the genome to mediate activity-dependent transcription in mouse cortical neurons. We find that the subset of enhancers enriched for monomethylation of histone H3 Lys4 (H3K4me1) and binding of the transcriptional coactivator CREBBP (also called CBP) that shows increased acetylation of histone H3 Lys27 (H3K27ac) after membrane depolarization of cortical neurons functions to regulate activity-dependent transcription. A subset of these enhancers appears to require binding of FOS, which was previously thought to bind primarily to promoters. These findings suggest that FOS functions at enhancers to control activity-dependent gene programs that are critical for nervous system function and provide a resource of functional cis-regulatory elements that may give insight into the genetic variants that contribute to brain development and disease.


Asunto(s)
Regulación de la Expresión Génica/genética , Neuronas/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Proteína de Unión a CREB/metabolismo , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neuronas/efectos de los fármacos , Proteínas Oncogénicas v-fos/metabolismo , Cloruro de Potasio/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Factores de Tiempo , Corteza Visual/citología
14.
Cell ; 158(1): 98-109, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995981

RESUMEN

Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Histonas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Metilación de ADN , Elementos Transponibles de ADN , Estudio de Asociación del Genoma Completo , Histonas/química , Histonas/genética , Datos de Secuencia Molecular , Alineación de Secuencia
15.
Proc Natl Acad Sci U S A ; 111(20): 7474-9, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24799676

RESUMEN

Epigenetic gene silencing is of central importance to maintain genome integrity and is mediated by an elaborate interplay between DNA methylation, histone posttranslational modifications, and chromatin remodeling complexes. DNA methylation and repressive histone marks usually correlate with transcriptionally silent heterochromatin, however there are exceptions to this relationship. In Arabidopsis, mutation of Morpheus Molecule 1 (MOM1) causes transcriptional derepression of heterochromatin independently of changes in DNA methylation. More recently, two Arabidopsis homologues of mouse microrchidia (MORC) genes have also been implicated in gene silencing and heterochromatin condensation without altering genome-wide DNA methylation patterns. In this study, we show that Arabidopsis microrchidia (AtMORC6) physically interacts with AtMORC1 and with its close homologue, AtMORC2, in two mutually exclusive protein complexes. RNA-sequencing analyses of high-order mutants indicate that AtMORC1 and AtMORC2 act redundantly to repress a common set of loci. We also examined genetic interactions between AtMORC6 and MOM1 pathways. Although AtMORC6 and MOM1 control the silencing of a very similar set of genomic loci, we observed synergistic transcriptional regulation in the mom1/atmorc6 double mutant, suggesting that these epigenetic regulators act mainly by different silencing mechanisms.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/química , Metilación de ADN , Elementos Transponibles de ADN , Epigénesis Genética , Genotipo , Heterocromatina/metabolismo , Mutación , Unión Proteica
16.
Nat Struct Mol Biol ; 21(1): 64-72, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24336224

RESUMEN

DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN , Epigénesis Genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , ADN de Plantas
17.
Proc Natl Acad Sci U S A ; 110(31): 12750-5, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23852726

RESUMEN

Studies of DNA methylation from fungi, plants, and animals indicate that gene body methylation is ancient and highly conserved in eukaryotic genomes, but its role has not been clearly defined. It has been postulated that regulation of alternative splicing of transcripts was an original function of DNA methylation, but a direct experimental test of the effect of methylation on alternative slicing at the whole genome level has never been performed. To do this, we developed a unique method to administer RNA interference (RNAi) in a high-throughput and noninvasive manner and then used it to knock down the expression of DNA methyl-transferase 3 (dnmt3), which is required for de novo DNA methylation. We chose the honey bee (Apis mellifera) for this test because it has recently emerged as an important model organism for studying the effects of DNA methylation on development and social behavior, and DNA methylation in honey bees is predominantly on gene bodies. Here we show that dnmt3 RNAi decreased global genomic methylation level as expected and in addition caused widespread and diverse changes in alternative splicing in fat tissue. Four different types of splicing events were affected by dnmt3 gene knockdown, and change in two types, exon skipping and intron retention, was directly related to decreased methylation. These results demonstrate that one function of gene body DNA methylation is to regulate alternative splicing.


Asunto(s)
Empalme Alternativo/fisiología , Abejas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Proteínas de Insectos/metabolismo , Interferencia de ARN , Animales , Abejas/genética , Conducta Animal , ADN (Citosina-5-)-Metiltransferasas/genética , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/genética , Conducta Social
18.
Elife ; 2: e00354, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23539454

RESUMEN

Most transgenic crops are produced through tissue culture. The impact of utilizing such methods on the plant epigenome is poorly understood. Here we generated whole-genome, single-nucleotide resolution maps of DNA methylation in several regenerated rice lines. We found that all tested regenerated plants had significant losses of methylation compared to non-regenerated plants. Loss of methylation was largely stable across generations, and certain sites in the genome were particularly susceptible to loss of methylation. Loss of methylation at promoters was associated with deregulated expression of protein-coding genes. Analyses of callus and untransformed plants regenerated from callus indicated that loss of methylation is stochastically induced at the tissue culture step. These changes in methylation may explain a component of somaclonal variation, a phenomenon in which plants derived from tissue culture manifest phenotypic variability. DOI:http://dx.doi.org/10.7554/eLife.00354.001.


Asunto(s)
Epigénesis Genética , Oryza/crecimiento & desarrollo , Oryza/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Regeneración , Técnicas de Cultivo de Tejidos , Metilación de ADN , Epigenómica/métodos , Regulación de la Expresión Génica de las Plantas , Genotipo , Fenotipo , Regiones Promotoras Genéticas , Procesos Estocásticos , Factores de Tiempo
19.
Curr Biol ; 23(4): 345-50, 2013 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-23394836

RESUMEN

Epigenetic regulation helps to maintain genomic integrity by suppressing transposable elements (TEs) and also controls key developmental processes, such as flowering time. To prevent TEs from causing rearrangements and mutations, TE and TE-like repetitive DNA sequences are usually methylated, whereas histones are hypoacetylated and methylated on specific residues (e.g., H3 lysine 9 dimethylation [H3K9me2]). TEs and repeats can also attenuate gene expression. However, how various histone modifiers are recruited to target loci is not well understood. Here we show that knockdown of the nuclear matrix protein with AT-hook DNA binding motifs TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK) in Arabidopsis Landsberg erecta results in robust activation of various TEs, the TE-like repeat-containing floral repressor genes FLOWERING LOCUS C (FLC) and FWA. This derepression is associated with chromatin conformational changes, increased histone acetylation, reduced H3K9me2, and even TE transposition. TEK directly binds to an FLC-repressive regulatory region and the silencing repeats of FWA and associates with Arabidopsis homologs of the Retinoblastoma-associated protein 46/48, FVE and MSI5, which mediate histone deacetylation. We propose that the nuclear matrix protein TEK acts in the maintenance of genome integrity by silencing TE and repeat-containing genes.


Asunto(s)
Arabidopsis/genética , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas de Unión a Retinoblastoma/metabolismo , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Interferencia de ARN , ARN Interferente Pequeño
20.
Cell ; 152(1-2): 352-64, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23313553

RESUMEN

Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Genoma de Planta , Proteínas de Arabidopsis/metabolismo , Islas de CpG , Silenciador del Gen , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , Factores de Empalme de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...