RESUMEN
BACKGROUND: Sudden unexpected death in epilepsy (SUDEP) is a fatal complication experienced by otherwise healthy epilepsy patients. Dravet syndrome (DS) is an inherited epileptic disorder resulting from loss of function of the voltage-gated sodium channel, NaV 1.1, and is associated with particularly high SUDEP risk. Evidence is mounting that NaVs abundant in the brain also occur in the heart, suggesting that the very molecular mechanisms underlying epilepsy could also precipitate cardiac arrhythmias and sudden death. Despite marked reduction of NaV 1.1 functional expression in DS, pathogenic late sodium current (INa,L) is paradoxically increased in DS hearts. However, the mechanisms by which DS directly impacts the heart to promote sudden death remain unclear. OBJECTIVES: In this study, the authors sought to provide evidence implicating remodeling of Na+ - and Ca2+ -handling machinery, including NaV 1.6 and Na+/Ca2+exchanger (NCX) within transverse (T)-tubules in DS-associated arrhythmias. METHODS: The authors undertook scanning ion conductance microscopy (SICM)-guided patch clamp, super-resolution microscopy, confocal Ca2+ imaging, and in vivo electrocardiography studies in Scn1a haploinsufficient murine model of DS. RESULTS: DS promotes INa,L in T-tubular nanodomains, but not in other subcellular regions. Consistent with increased NaV activity in these regions, super-resolution microscopy revealed increased NaV 1.6 density near Ca2+release channels, the ryanodine receptors (RyR2) and NCX in DS relative to WT hearts. The resulting INa,L in these regions promoted aberrant Ca2+ release, leading to ventricular arrhythmias in vivo. Cardiac-specific deletion of NaV 1.6 protects adult DS mice from increased T-tubular late NaV activity and the resulting arrhythmias, as well as sudden death. CONCLUSIONS: These data demonstrate that NaV 1.6 undergoes remodeling within T-tubules of adult DS hearts serving as a substrate for Ca2+ -mediated cardiac arrhythmias and may be a druggable target for the prevention of SUDEP in adult DS subjects.
Asunto(s)
Epilepsias Mioclónicas , Canal de Sodio Activado por Voltaje NAV1.6 , Animales , Femenino , Humanos , Masculino , Ratones , Arritmias Cardíacas/genética , Calcio/metabolismo , Epilepsias Mioclónicas/genética , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Muerte Súbita e Inesperada en la EpilepsiaRESUMEN
Correlative light and electron microscopy (CLEM) methods are powerful methods that combine molecular organization (from light microscopy) with ultrastructure (from electron microscopy). However, CLEM methods pose high cost/difficulty barriers to entry and have very low experimental throughput. Therefore, we have developed an indirect correlative light and electron microscopy (iCLEM) pipeline to sidestep the rate-limiting steps of CLEM (i.e., preparing and imaging the same samples on multiple microscopes) and correlate multiscale structural data gleaned from separate samples imaged using different modalities by exploiting biological structures identifiable by both light and electron microscopy as intrinsic fiducials. We demonstrate here an application of iCLEM, where we utilized gap junctions and mechanical junctions between muscle cells in the heart as intrinsic fiducials to correlate ultrastructural measurements from transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM) with molecular organization from confocal microscopy and single molecule localization microscopy (SMLM). We further demonstrate how iCLEM can be integrated with computational modeling to discover structure-function relationships. Thus, we present iCLEM as a novel approach that complements existing CLEM methods and provides a generalizable framework that can be applied to any set of imaging modalities, provided suitable intrinsic fiducials can be identified.
Asunto(s)
Microscopía Electrónica , Animales , Microscopía Electrónica/métodos , Uniones Comunicantes/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Microscopía Confocal/métodos , Microscopía Electrónica de Rastreo/métodos , RatonesRESUMEN
BACKGROUND: Propagation of action potentials through the heart coordinates the heartbeat. Thus, intercalated discs, specialized cell-cell contact sites that provide electrical and mechanical coupling between cardiomyocytes, are an important target for study. Impaired propagation leads to arrhythmias in many pathologies, where intercalated disc remodeling is a common finding, hence the importance and urgency of understanding propagation dependence on intercalated disc structure. Conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, because of lack of quantitative structural data at subcellular through nano scales. OBJECTIVES: This study sought to quantify intercalated disc structure at these spatial scales in the healthy adult mouse heart and relate them to chamber-specific properties of propagation as a precursor to understanding the effects of pathological intercalated disc remodeling. METHODS: Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. RESULTS: By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by interchamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. CONCLUSIONS: These data provide the first stepping stone to elucidating chamber-specific effects of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.
Asunto(s)
Miocardio , Miocitos Cardíacos , Ratones , Animales , Frecuencia Cardíaca , Miocitos Cardíacos/fisiología , Arritmias CardíacasRESUMEN
Calmodulin (CaM) plays critical roles in cardiomyocytes, regulating Na+ (NaV) and L-type Ca2+ channels (LTCCs). LTCC dysregulation by mutant CaMs has been implicated in action potential duration (APD) prolongation and arrhythmogenic long QT (LQT) syndrome. Intriguingly, D96V-CaM prolongs APD more than other LQT-associated CaMs despite inducing comparable levels of LTCC dysfunction, suggesting dysregulation of other depolarizing channels. Here, we provide evidence implicating NaV dysregulation within transverse (T) tubules in D96V-CaM-associated arrhythmias. D96V-CaM induced a proarrhythmic late Na+ current (INa) by impairing inactivation of NaV1.6, but not the predominant cardiac NaV isoform NaV1.5. We investigated arrhythmia mechanisms using mice with cardiac-specific expression of D96V-CaM (cD96V). Super-resolution microscopy revealed close proximity of NaV1.6 and RyR2 within T-tubules. NaV1.6 density within these regions increased in cD96V relative to WT mice. Consistent with NaV1.6 dysregulation by D96V-CaM in these regions, we observed increased late NaV activity in T-tubules. The resulting late INa promoted aberrant Ca2+ release and prolonged APD in myocytes, leading to LQT and ventricular tachycardia in vivo. Cardiac-specific NaV1.6 KO protected cD96V mice from increased T-tubular late NaV activity and its arrhythmogenic consequences. In summary, we demonstrate that D96V-CaM promoted arrhythmias by dysregulating LTCCs and NaV1.6 within T-tubules and thereby facilitating aberrant Ca2+ release.
Asunto(s)
Calmodulina , Síndrome de QT Prolongado , Ratones , Animales , Calmodulina/genética , Calmodulina/metabolismo , Calcio/metabolismo , Sodio/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genéticaRESUMEN
During each heartbeat, the propagation of action potentials through the heart coordinates the contraction of billions of individual cardiomyocytes and is thus, a critical life process. Unsurprisingly, intercalated discs, which are cell-cell contact sites specialized to provide electrical and mechanical coupling between adjacent cardiomyocytes, have been the focus of much investigation. Slowed or disrupted propagation leads to potentially life-threatening arrhythmias in a wide range of pathologies, where intercalated disc remodeling is a common finding. Hence, the importance and urgency of understanding intercalated disc structure and its influence on action potential propagation. Surprisingly, however, conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, owing to lack of quantitative structural data at subcellular through nano scales. In order to address this critical gap in knowledge, we sought to quantify intercalated disc structure at these finer spatial scales in the healthy adult mouse heart and relate them to function in a chamber-specific manner as a precursor to understanding the impacts of pathological intercalated disc remodeling. Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by inter-chamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. These data provide the first stepping stone to elucidating chamber-specific impacts of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.
RESUMEN
Gene/oligonucleotide therapies have emerged as a promising strategy for the treatment of different neurological conditions. However, current methodologies for the delivery of neurogenic/neurotrophic cargo to brain and nerve tissue are fraught with caveats, including reliance on viral vectors, potential toxicity, and immune/inflammatory responses. Moreover, delivery to the central nervous system is further compounded by the low permeability of the blood brain barrier. Extracellular vesicles (EVs) have emerged as promising delivery vehicles for neurogenic/neurotrophic therapies, overcoming many of the limitations mentioned above. However, the manufacturing processes used for therapeutic EVs remain poorly understood. Here, we conducted a detailed study of the manufacturing process of neurogenic EVs by characterizing the nature of cargo and surface decoration, as well as the transfer dynamics across donor cells, EVs, and recipient cells. Neurogenic EVs loaded with Ascl1, Brn2, and Myt1l (ABM) are found to show enhanced neuron-specific tropism, modulate electrophysiological activity in neuronal cultures, and drive pro-neurogenic conversions/reprogramming. Moreover, murine studies demonstrate that surface decoration with glutamate receptors appears to mediate enhanced EV delivery to the brain. Altogether, the results indicate that ABM-loaded designer EVs can be a promising platform nanotechnology to drive pro-neuronal responses, and that surface functionalization with glutamate receptors can facilitate the deployment of EVs to the brain.
Asunto(s)
Vesículas Extracelulares , Animales , Barrera Hematoencefálica , Comunicación Celular , Sistema Nervioso Central , Vesículas Extracelulares/metabolismo , Ratones , NeuronasRESUMEN
The intercalated disk (ID) is a specialized subcellular region that provides electrical and mechanical connections between myocytes in the heart. The ID has a clearly defined passive role in cardiac tissue, transmitting mechanical forces and electrical currents between cells. Recent studies have shown that Na+ channels, the primary current responsible for cardiac excitation, are preferentially localized at the ID, particularly within nanodomains such as the gap junction-adjacent perinexus and mechanical junction-associated adhesion-excitability nodes, and that perturbations of ID structure alter cardiac conduction. This suggests that the ID may play an important, active role in regulating conduction. However, the structures of the ID and intercellular cleft are not well characterized and, to date, no models have incorporated the influence of ID structure on conduction in cardiac tissue. In this study, we developed an approach to generate realistic finite element model (FEM) meshes replicating nanoscale of the ID structure, based on experimental measurements from transmission electron microscopy images. We then integrated measurements of the intercellular cleft electrical conductivity, derived from the FEM meshes, into a novel cardiac tissue model formulation. FEM-based calculations predict that the distribution of cleft conductances is sensitive to regional changes in ID structure, specifically the intermembrane separation and gap junction distribution. Tissue-scale simulations predict that ID structural heterogeneity leads to significant spatial variation in electrical polarization within the intercellular cleft. Importantly, we found that this heterogeneous cleft polarization regulates conduction by desynchronizing the activation of postjunctional Na+ currents. Additionally, these heterogeneities lead to a weaker dependence of conduction velocity on gap junctional coupling, compared with prior modeling formulations that neglect or simplify ID structure. Further, we found that disruption of local ID nanodomains can either slow or enhance conduction, depending on gap junctional coupling strength. Our study therefore suggests that ID nanoscale structure can play a significant role in regulating cardiac conduction.
Asunto(s)
Uniones Comunicantes , Miocardio , Corazón , Células Musculares , Miocitos Cardíacos , SodioRESUMEN
Atrial fibrillation (AF) is the most common arrhythmia and is associated with inflammation. AF patients have elevated levels of inflammatory cytokines known to promote vascular leak, such as vascular endothelial growth factor A (VEGF). However, the contribution of vascular leak and consequent cardiac edema to the genesis of atrial arrhythmias remains unknown. Previous work suggests that interstitial edema in the heart can acutely promote ventricular arrhythmias by disrupting ventricular myocyte intercalated disk (ID) nanodomains rich in cardiac sodium channels (NaV1.5) and slowing cardiac conduction. Interestingly, similar disruption of ID nanodomains has been identified in atrial samples from AF patients. Therefore, we tested the hypothesis that VEGF-induced vascular leak can acutely increase atrial arrhythmia susceptibility by disrupting ID nanodomains and slowing atrial conduction. Treatment of murine hearts with VEGF (30-60 min, at clinically relevant levels) prolonged the electrocardiographic P wave and increased susceptibility to burst pacing-induced atrial arrhythmias. Optical voltage mapping revealed slower atrial conduction following VEGF treatment (10 ± 0.4 cm/s vs. 21 ± 1 cm/s at baseline, p < 0.05). Transmission electron microscopy revealed increased intermembrane spacing at ID sites adjacent to gap junctions (GJs; 64 ± 9 nm versus 17 ± 1 nm in controls, p < 0.05), as well as sites next to mechanical junctions (MJs; 63 ± 4 nm versus 27 ± 2 nm in controls, p < 0.05) in VEGF-treated hearts relative to controls. Importantly, super-resolution microscopy and quantitative image analysis revealed reorganization of NaV1.5 away from dense clusters localized near GJs and MJs to a more diffuse distribution throughout the ID. Taken together, these data suggest that VEGF can acutely predispose otherwise normal hearts to atrial arrhythmias by dynamically disrupting NaV1.5-rich ID nanodomains and slowing atrial conduction. These data highlight inflammation-induced vascular leak as a potential factor in the development and progression of AF.
Asunto(s)
Fibrilación Atrial/fisiopatología , Sistema de Conducción Cardíaco/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Fibrilación Atrial/metabolismo , Electrocardiografía , Uniones Comunicantes/metabolismo , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiopatología , Masculino , Ratones , Microscopía Electrónica de Transmisión , Modelos Biológicos , Factores de Crecimiento Endotelial Vascular/farmacologíaRESUMEN
Background Atrial fibrillation (AF) is a comorbidity associated with heart failure and catecholaminergic polymorphic ventricular tachycardia. Despite the Ca2+-dependent nature of both of these pathologies, AF often responds to Na+ channel blockers. We investigated how targeting interdependent Na+/Ca2+ dysregulation might prevent focal activity and control AF. Methods and Results We studied AF in 2 models of Ca2+-dependent disorders, a murine model of catecholaminergic polymorphic ventricular tachycardia and a canine model of chronic tachypacing-induced heart failure. Imaging studies revealed close association of neuronal-type Na+ channels (nNav) with ryanodine receptors and Na+/Ca2+ exchanger. Catecholamine stimulation induced cellular and in vivo atrial arrhythmias in wild-type mice only during pharmacological augmentation of nNav activity. In contrast, catecholamine stimulation alone was sufficient to elicit atrial arrhythmias in catecholaminergic polymorphic ventricular tachycardia mice and failing canine atria. Importantly, these were abolished by acute nNav inhibition (tetrodotoxin or riluzole) implicating Na+/Ca2+ dysregulation in AF. These findings were then tested in 2 nonrandomized retrospective cohorts: an amyotrophic lateral sclerosis clinic and an academic medical center. Riluzole-treated patients adjusted for baseline characteristics evidenced significantly lower incidence of arrhythmias including new-onset AF, supporting the preclinical results. Conclusions These data suggest that nNaVs mediate Na+-Ca2+ crosstalk within nanodomains containing Ca2+ release machinery and, thereby, contribute to AF triggers. Disruption of this mechanism by nNav inhibition can effectively prevent AF arising from diverse causes.
Asunto(s)
Antiarrítmicos/farmacología , Fibrilación Atrial/prevención & control , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Riluzol/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Taquicardia Ventricular/tratamiento farmacológico , Tetrodotoxina/farmacología , Adulto , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Señalización del Calcio/efectos de los fármacos , Estimulación Cardíaca Artificial , Catecolaminas , Modelos Animales de Enfermedad , Perros , Femenino , Insuficiencia Cardíaca/metabolismo , Humanos , Italia , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Persona de Mediana Edad , Estudios Retrospectivos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canales de Sodio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , UtahRESUMEN
The voltage-gated sodium channel [pore-forming subunit of the neuronal voltage-gated sodium channel (NaV1.6)] has recently been found in cardiac myocytes. Emerging studies indicate a role for NaV1.6 in ionic homeostasis as well as arrhythmogenesis. Little is known about the spatial organization of these channels in cardiac muscle, mainly due to the lack of high-fidelity antibodies. Therefore, we developed and rigorously validated a novel rabbit polyclonal NaV1.6 antibody and undertook super-resolution microscopy studies of NaV1.6 localization in cardiac muscle. We developed and validated a novel rabbit polyclonal antibody against a C-terminal epitope on the neuronal sodium channel 1.6 (NaV1.6). Raw sera showed high affinity in immuno-fluorescence studies, which was improved with affinity purification. The antibody was rigorously validated for specificity via multiple approaches. Lastly, we used this antibody in proximity ligation assay (PLA) and super-resolution STochastic Optical Reconstruction Microscopy (STORM) studies, which revealed enrichment of NaV1.6 in close proximity to ryanodine receptor (RyR2), a key calcium (Ca2+) cycling protein, in cardiac myocytes. In summary, our novel NaV1.6 antibody demonstrates high degrees of specificity and fidelity in multiple preparations. It enabled multimodal microscopic studies and revealed that over half of the NaV1.6 channels in cardiac myocytes are located within 100 nm of ryanodine receptor Ca2+ release channels.
Asunto(s)
Miocardio/citología , Canal de Sodio Activado por Voltaje NAV1.6/análisis , Canal Liberador de Calcio Receptor de Rianodina/análisis , Animales , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Imagen ÓpticaRESUMEN
Underlying metabolic disease is poor adipose tissue function characterized by impaired glucose tolerance and low expression of health promoting adipokines. Currently, no treatments specifically target the adipose tissue and we are investigating polymer scaffolds for localized drug delivery as a therapeutic platform. In this work we implanted porous poly(lactide-co-glycolide) scaffolds into the epididymal fat of mice. Surprisingly, "empty" scaffolds decreased blood glucose levels in healthy mice as well as epididymal fat pad size. By injecting a fluorescent glucose tracer into mice, we determined that glucose uptake increases by 60% in epididymal fat pads with scaffolds; in contrast, glucose uptake was not elevated in other major metabolic organs, suggesting the enhanced glucose uptake at the scaffold implant site was responsible for decreased blood glucose levels. Histology indicated increased cellularity and tissue remodeling around the scaffold and we found increased expression of glucose transporter 1 and insulin-like growth factor 1, which are proteins involved in wound healing that can also modulate blood glucose levels through their promotion of glucose uptake. Regarding clinical translation, "empty" scaffolds decreased obesity and improved glucose tolerance in mice fed a high fat diet. These findings demonstrate increased cellular activity in the adipose tissue, such as that associated with the host response to biomaterial implant, is beneficial in mice suffering from metabolic complications of over nutrition, possibly because it mitigates the positive energy balance that leads to the obese, diabetic state. More broadly, this work reaffirms that in addition to the local host response typically investigated, biomaterial implant has systemic physiological effects and suggests that there may be implications for therapy.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/prevención & control , Obesidad/prevención & control , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Andamios del Tejido/química , Tejido Adiposo/patología , Adiposidad , Animales , Glucemia/metabolismo , Composición Corporal , Epidídimo/patología , Ayuno/sangre , Intolerancia a la Glucosa/sangre , Transportador de Glucosa de Tipo 1/metabolismo , Implantes Experimentales , Factor I del Crecimiento Similar a la Insulina/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/sangre , Tamaño de los Órganos , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Dysregulation of the tightly controlled protein phosphorylation networks that govern cellular behavior causes cancer. The membrane-associated, intracellular protein tyrosine phosphatase PTP4A3 is overexpressed in human colorectal cancer and contributes to cell migration and invasion. To interrogate further the role of PTP4A3 in colorectal cancer cell migration and invasion, we deleted the Ptp4a3 gene from murine colorectal tumor cells. The resulting PTP4A3-/- cells exhibited impaired colony formation, spheroid formation, migration, and adherence compared with the paired PTP4A3fl/fl cells. We replicated these phenotypic changes using the new small-molecule, allosteric PTP4A3 inhibitor JMS-053. A related structure, JMS-038, which lacked phosphatase inhibition, displayed no cellular activity. Reduction in cell viability and colony formation by JMS-053 occurred in both mouse and human colorectal cell lines and required PTP4A3 expression. Ptp4a3 deletion increased the expression of extracellular matrix (ECM) and adhesion genes, including the tumor suppressor Emilin 1. JMS-053 also increased Emilin 1 gene expression. Moreover, The Cancer Genome Atlas genomic database revealed human colorectal tumors with high Ptp4a3 expression had low Emilin 1 expression. These chemical and biologic reagents reveal a previously unknown communication between the intracellular PTP4A3 phosphatase and the ECM and support efforts to pharmacologically target PTP4A3.-McQueeney, K. E., Salamoun, J. M., Ahn J. G., Pekic, P., Blanco, I. K., Struckman, H. L., Sharlow, E. R., Wipf, P., Lazo, J. S. A chemical genetics approach identifies PTP4A3 as a regulator of colon cancer cell adhesion.