Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 40, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297316

RESUMEN

BACKGROUND: Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS: Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS: Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Masculino , Humanos , Proteínas de Unión al ADN/metabolismo , Factor de Unión a CCCTC/metabolismo , Factores de Transcripción/metabolismo , Histonas/metabolismo , Cromatina , Sitios de Unión
2.
NAR Genom Bioinform ; 4(4): lqac085, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36415827

RESUMEN

Separase is a protease that performs critical functions in the maintenance of genetic homeostasis. Among them, the cleavage of the meiotic cohesin during meiosis is a key step in producing gametes in eukaryotes. However, the exact chromosomal localization of this proteolytic cleavage was not addressed due to the lack of experimental tools. To this end, we developed a method based on monoclonal antibodies capable of recognizing the predicted neo-epitopes produced by separase-mediated proteolysis in the RAD21 and REC8 cohesin subunits. To validate the epigenomic strategy of mapping cohesin proteolysis, anti-RAD21 neo-epitopes antibodies were used in ChIP-On-ChEPseq analysis of human cells undergoing mitotic anaphase. Second, a similar analysis applied for mapping of REC8 cleavage in germline cells in Macaque showed a correlation with a subset of alpha-satellites and other repeats, directly demonstrating that the site-specific mei-cohesin proteolysis hotspots are coincident but not identical with centromeres. The sequences for the corresponding immunoglobulin genes show a convergence of antibodies with close specificity. This approach could be potentially used to investigate cohesin ring opening events in other chromosomal locations, if applied to single cells.

3.
Proc Natl Acad Sci U S A ; 119(40): e2204071119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36179046

RESUMEN

Many tumors express meiotic genes that could potentially drive somatic chromosome instability. While germline cohesin subunits SMC1B, STAG3, and REC8 are widely expressed in many cancers, messenger RNA and protein for RAD21L subunit are expressed at very low levels. To elucidate the potential of meiotic cohesins to contribute to genome instability, their expression was investigated in human cell lines, predominately in DLD-1. While the induction of the REC8 complex resulted in a mild mitotic phenotype, the expression of the RAD21L complex produced an arrested but viable cell pool, thus providing a source of DNA damage, mitotic chromosome missegregation, sporadic polyteny, and altered gene expression. We also found that genomic binding profiles of ectopically expressed meiotic cohesin complexes were reminiscent of their corresponding specific binding patterns in testis. Furthermore, meiotic cohesins were found to localize to the same sites as BORIS/CTCFL, rather than CTCF sites normally associated with the somatic cohesin complex. These findings highlight the existence of a germline epigenomic memory that is conserved in cells that normally do not express meiotic genes. Our results reveal a mechanism of action by unduly expressed meiotic cohesins that potentially links them to aneuploidy and chromosomal mutations in affected cells.


Asunto(s)
Expresión Génica Ectópica , Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Inestabilidad Cromosómica/genética , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Meiosis/genética , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , ARN Mensajero , Cohesinas
4.
Nat Commun ; 12(1): 3846, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158481

RESUMEN

CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.


Asunto(s)
Factor de Unión a CCCTC/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Espermatogénesis/genética , Testículo/metabolismo , Animales , Factor de Unión a CCCTC/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Infertilidad Masculina/genética , Masculino , Meiosis/genética , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Unión Proteica , RNA-Seq/métodos , Recombinación Genética , Espermatozoides/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(4): 2020-2031, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31937660

RESUMEN

The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Neoplasias/metabolismo , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , ADN de Neoplasias/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Genoma Humano , Humanos , Unión Proteica , Dominios Proteicos , Células Tumorales Cultivadas , Cohesinas
6.
Genome Biol ; 16: 161, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26268681

RESUMEN

BACKGROUND: CTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation. RESULTS: Here we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells. CONCLUSIONS: We discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCCTC , Línea Celular , Cromatina/química , ADN/química , ADN/metabolismo , Genoma , Humanos , Células K562 , Masculino , Ratones , Neoplasias/genética , Motivos de Nucleótidos , Unión Proteica , Espermátides/metabolismo , Espermatozoides/metabolismo , Transcripción Genética
7.
Chromosoma ; 121(2): 191-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22179743

RESUMEN

Condensin complexes are essential for chromosome condensation and segregation in mitosis, while condensin dysfunction, among other pathways leading to chromosomal bridging in mitosis, may play a role in tumor genomic instability, including recently discovered chromotripsis. To characterize potential double-strand breaks specifically occurring in late anaphase, human chromosomes depleted of condensin were analyzed by γ-H2AX ChIP followed by high-throughput sequencing (ChIP-seq). In condensin-depleted cells, the nonrepeated parts of the genome were shown to contain distinct γ-H2AX enrichment zones 75% of which overlapped with known hemizygous deletions in cancers. Furthermore, some tandemly repeated DNA sequences, analyzed separately from the rest of the genome, showed significant γ-H2AX enrichment in condensin-depleted anaphases. The most commonly occurring targets of such enrichment included simple repeats, centromeric satellites, and rDNA. The two latter categories indicate that acrocentric human chromosomes are especially susceptible to breaks upon condensin deficiency. The genomic regions that are specifically destabilized upon condensin dysfunction may constitute a condensin-specific chromosome destabilization pattern.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Anafase/fisiología , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Genoma Humano/genética , Histonas/genética , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Benzotiazoles , Inmunoprecipitación de Cromatina , Ensayo Cometa , Diaminas , Técnica del Anticuerpo Fluorescente Indirecta , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Compuestos Orgánicos , Quinolinas , Interferencia de ARN , Secuencias Repetidas en Tándem/genética
8.
PLoS One ; 5(11): e13872, 2010 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21079786

RESUMEN

BACKGROUND: BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF) in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST) promoter and the IGF2/H19 imprinting control region (ICR), it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258) in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates. CONCLUSIONS: The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may be evolutionarily tied to unique aspects of primate speciation.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN/genética , Gametogénesis/genética , Regiones Promotoras Genéticas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factor de Unión a CCCTC , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Células K562 , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Microscopía Fluorescente , Datos de Secuencia Molecular , Neoplasias/genética , Neoplasias/patología , Isoformas de Proteínas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Testículo/citología , Testículo/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Dedos de Zinc
9.
Cell Div ; 5(1): 15, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20482869

RESUMEN

Recent data show that cells from many cancers exhibit massive chromosome instability. The traditional view is that the gradual accumulation of mutations in genes involved in transcriptional regulation and cell cycle controls results in tumor development. This, however, does not exclude the possibility that some mutations could be more potent than others in destabilizing the genome by targeting both chromosomal integrity and corresponding checkpoint mechanisms simultaneously. Three such examples of "single-hit" lesions potentially leading to heritable genome destabilization are discussed. They include: failure to release sister chromatid cohesion due to the incomplete proteolytic cleavage of cohesin; massive merotelic kinetochore misattachments upon condensin depletion; and chromosome under-replication. In all three cases, cells fail to detect potential chromosomal bridges before anaphase entry, indicating that there is a basic cell cycle requirement to maintain a degree of sister chromatid bridging that is not recognizable as chromosomal damage.

10.
Cell Cycle ; 7(12): 1738-44, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18583943

RESUMEN

SUMO (small ubiquitin-related modifier), a 12 kDa protein with distant similarity to ubiquitin, covalently binds to many proteins in eukaryotic cells. In contrast to ubiquitination, which mainly regulates proteasome-dependent degradation and protein sorting, sumoylation is known to regulate assembly and disassembly of protein complexes, protein localization and stability, and so on. SUMO is primarily localized to the nucleus, and many SUMO substrates are nuclear proteins involved in DNA transaction. However, certain roles of SUMO conjugates have been shown outside the nucleus. Particularly in budding yeast, SUMO is also localized to the bud-neck in a cell cycle-dependent manner. The first and prominent SUMO substrates are septins, evolutionally conserved proteins required for cytokinesis in yeast. Recent analysis of human septin structure would greatly facilitate the study of the functions of these SUMO conjugates. SUMO modification of septins is regulated by cell cycle-dependent nuclear transport of PIAS-type Siz1 (SUMO E3) and Ulp1 desumoylation enzyme in yeast. Domains outside the SUMO-ligase core (SP-RING) of Siz1 ensure its regulations. Furthermore, newly discovered ubiquitin ligases that specifically recognize poly-SUMO conjugates could lead to degradation of SUMO conjugates. Thus, protein modifications seem to be regulated in an unexpectedly complex manner. In this review, we focus on various regulations in yeast septin sumoylation and discuss its possible functions.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/enzimología , Citoplasma/enzimología , GTP Fosfohidrolasas/metabolismo , Humanos , Carioferinas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligasas/química
11.
Plasmid ; 55(2): 135-44, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16229890

RESUMEN

Bacterial chromosomes segregate via a partition apparatus that employs a score of specialized proteins. The SMC complexes play a crucial role in the chromosome partitioning process by organizing bacterial chromosomes through their ATP-dependent chromatin-compacting activity. Recent progress in the composition of these complexes and elucidation of their structural and enzymatic properties has advanced our comprehension of chromosome condensation and segregation mechanics in bacteria.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiología , Segregación Cromosómica/fisiología , Cromosomas Bacterianos/química , Cromosomas Bacterianos/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/genética , Segregación Cromosómica/genética , Cromosomas Bacterianos/genética , Datos de Secuencia Molecular
12.
Cell Cycle ; 4(1): 113-7, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15655374

RESUMEN

Mitotic segregation of nucleolus in fission and budding yeast proceeds without disassembling its complex structure, creating challenging problems for transmission of nucleolus-organizing regions during nuclear division. The SMC complex called condensin, which plays a leading role in organizing mitotic structure of chromosomes in all eukaryotes, is essential for nucleolar segregation in budding yeast, where rDNA chromatin is the main target of mitotic condensin activity. Mitosis-specific condensin targeting to the nucleolus presents an attractive model to study mechanisms controlling condensin binding to specific chromatin domains. Recent reports suggest that the early-anaphase release of Cdc14 from the nucleolus (FEAR pathway) controls the proficiency of nucleolar segregation by promoting the mitotic condensin function in rDNA. This finding uncovers an essential function for the FEAR pathway and postulates the unique nucleolar self-regulatory mechanism, which evolved to recruit two essential enzymatic activities, Cdc14 phosphatase and condensin ATP-dependent supercoiling, for the specific task of segregating nucleoli without their disassembly.


Asunto(s)
División Celular/fisiología , Nucléolo Celular/fisiología , Segregación Cromosómica/fisiología , Saccharomyces cerevisiae/citología , Adenosina Trifosfatasas/fisiología , Anafase/fisiología , Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona , Segregación Cromosómica/genética , ADN Ribosómico/genética , ADN Ribosómico/fisiología , Proteínas de Unión al ADN/fisiología , Activación Enzimática , Proteínas Fúngicas/fisiología , Mitosis/genética , Mitosis/fisiología , Complejos Multiproteicos/fisiología , Proteínas Nucleares/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomycetales/citología , Saccharomycetales/genética , Saccharomycetales/fisiología , Transcripción Genética , Cohesinas
13.
Cell Cycle ; 3(7): 960-7, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15190202

RESUMEN

The condensin complex is the chief molecular machine of mitotic chromosome condensation. Nucleolar concentration of condensin in mitosis was previously shown to correlate with proficiency of rDNA condensation and segregation. To uncover the mechanisms facilitating this targeting we conducted a screen for mutants that impair mitotic condensin congression to the nucleolus. Mutants in the cdc14, esp1 and cdc5 genes, which encode FEAR-network components, showed the most prominent defects in mitotic condensin localization. We established that Cdc14p activity released by the FEAR pathway was required for proper condensin-to-rDNA targeting in anaphase. The MEN pathway was dispensable for condensin-to-rDNA targeting, however MEN-mediated release of Cdc14p later in anaphase allowed for proper, albeit delayed, condensin targeting to rDNA and successful segregation of nucleolus in the slk19 FEAR mutant. Although condensin was physically dislodged from rDNA in the cdc14 mutant, it was properly assembled, phosphorylated and chromatin-bound, suggesting that condensin was mis-targeted but active. This study identifies a novel pathway promoting condensin targeting to a specific chromosomal address, the rDNA locus.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Anafase/fisiología , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Cromatina/genética , Cromatina/metabolismo , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Marcación de Gen , Complejos Multiproteicos/genética , Mutación/genética , Proteínas Tirosina Fosfatasas/genética , Proteínas de Unión al ARN , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Separasa , Transducción de Señal/genética
14.
Prog Cell Cycle Res ; 5: 361-7, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14593730

RESUMEN

Mitotic chromosome condensation is an essential cellular function ensuring proper compaction and segregation of sister chromatids during cell division. Condensin, a five-subunit complex, conserved among eukaryotes, is the key molecular machine of chromosome condensation. Recent advances in the structural biology and functional analysis of condensin demonstrate the unique nature and indispensable biological role of this complex. Condensin functions span chromosome dynamics during mitotic cell division, cell-cycle feedback control mechanisms, as well as formation and maintenance of interphase chromosome structure. Being at the intersection of several cell-cycle regulatory networks condensin is a promising therapeutic target for control over cell proliferation.


Asunto(s)
Adenosina Trifosfatasas/genética , División Celular/genética , Segregación Cromosómica/genética , Proteínas de Unión al ADN/genética , Animales , Proteínas de Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , División Celular/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Segregación Cromosómica/efectos de los fármacos , Humanos , Complejos Multiproteicos , Subunidades de Proteína/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
15.
EMBO J ; 21(12): 3108-18, 2002 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-12065423

RESUMEN

Disruption of ypuG and ypuH open reading frames in Bacillus subtilis leads to temperature-sensitive slow growth, a defect in chromosome structure and formation of anucleate cells. The genes, which were named scpA and scpB, were found to be epistatic to the smc gene. Fusions of ScpA and ScpB to the fluorescent proteins YFP or CFP showed that both proteins co-localize to two or four discrete foci that were present at mid-cell in young cells, and within both cell halves, generally adjacent to chromosomal origin regions, in older cells. ScpA and ScpB foci are associated with DNA and depend on the presence of SMC and both Scps. ScpA and ScpB are associated with each other and with SMC in vivo, as determined using the FRET technique and immunoprecipitation assays. Genes similar to scpA and scpB are present in many bacteria and archaea, which suggests that their gene products form a condensation complex with SMC in most prokaryotes. The observed foci could constitute condensation factories that pull DNA away from mid-cell into both cell halves.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Segregación Cromosómica , Cromosomas Bacterianos/metabolismo , Bacillus subtilis/citología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Sistemas de Lectura Abierta/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
16.
Eur J Biochem ; 269(9): 2300-14, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11985612

RESUMEN

The centromere-kinetochore complex is a highly specialized chromatin domain that both mediates and monitors chromosome-spindle interactions responsible for accurate partitioning of sister chromatids to daughter cells. Centromeres are distinguished from adjacent chromatin by specific patterns of histone modification and the presence of a centromere-specific histone H3 variant (e.g. CENP-A). Centromere-proximal regions usually correspond to sites of avid and persistent sister chromatid cohesion mediated by the conserved cohesin complex. In budding yeast, there is a substantial body of evidence indicating centromeres direct formation and/or stabilization of centromere-proximal cohesion. In other organisms, the dependency of cohesion on centromere function is not as clear. Indeed, it appears that pericentromeric heterochromatin recruits cohesion proteins independent of centromere function. Nonetheless, aspects of centromere function are impaired in the absence of sister chromatid cohesion, suggesting the two are interdependent. Here we review the nature of centromeric chromatin, the dynamics and regulation of sister chromatid cohesion, and the relationship between the two.


Asunto(s)
Centrómero/fisiología , Cromátides/fisiología , Cinetocoros/fisiología , Animales , Proteínas Cromosómicas no Histona/fisiología , Heterocromatina/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA