Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(4): 974-997, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38530077

RESUMEN

The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.


Asunto(s)
Biotecnología , Biología Sintética
3.
Synth Biol (Oxf) ; 8(1): ysad014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022744

RESUMEN

Reproducibility has been identified as an outstanding challenge in science, and the field of synthetic biology is no exception. Meeting this challenge is critical to allow the transformative technological capabilities emerging from this field to reach their full potential to benefit the society. We discuss the current state of reproducibility in synthetic biology and how improvements can address some of the central shortcomings in the field. We argue that the successful adoption of reproducibility as a routine aspect of research and development requires commitment spanning researchers and relevant institutions via education, incentivization and investment in related infrastructure. The urgency of this topic pervades synthetic biology as it strives to advance fundamental insights and unlock new capabilities for safe, secure and scalable applications of biotechnology. Graphical Abstract.

4.
Cell Genom ; 3(11): 100438, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020966

RESUMEN

Microbes have long provided us with important capabilities, and the genome engineering of microbes has greatly empowered research and applications in biotechnology. This is especially true with the emergence of synthetic biology and recent advances in genome engineering to control microbial behavior. A fully synthetic, rationally designed genome promises opportunities for unprecedented control of cellular function. As a eukaryotic workhorse for research and industrial use, yeast is an organism at the forefront of synthetic biology; the tools and engineered cellular platform being delivered by the Sc2.0 consortium are enabling a new era of bespoke biology. This issue highlights recent advances delivered by this consortium, but hurdles remain to maximize the impact of engineered eukaryotic cells more broadly.

5.
ACS Synth Biol ; 12(5): 1546-1561, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37134273

RESUMEN

Cotranscriptionally encoded RNA strand displacement (ctRSD) circuits are an emerging tool for programmable molecular computation, with potential applications spanning in vitro diagnostics to continuous computation inside living cells. In ctRSD circuits, RNA strand displacement components are continuously produced together via transcription. These RNA components can be rationally programmed through base pairing interactions to execute logic and signaling cascades. However, the small number of ctRSD components characterized to date limits circuit size and capabilities. Here, we characterize over 200 ctRSD gate sequences, exploring different input, output, and toehold sequences and changes to other design parameters, including domain lengths, ribozyme sequences, and the order in which gate strands are transcribed. This characterization provides a library of sequence domains for engineering ctRSD components, i.e., a toolkit, enabling circuits with up to 4-fold more inputs than previously possible. We also identify specific failure modes and systematically develop design approaches that reduce the likelihood of failure across different gate sequences. Lastly, we show the ctRSD gate design is robust to changes in transcriptional encoding, opening a broad design space for applications in more complex environments. Together, these results deliver an expanded toolkit and design approaches for building ctRSD circuits that will dramatically extend capabilities and potential applications.


Asunto(s)
ADN , ARN , ARN/genética , Emparejamiento Base , Transducción de Señal
6.
Synth Biol (Oxf) ; 7(1): ysac015, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046152

RESUMEN

DNA templates for protein production remain an unexplored source of variability in the performance of cell-free expression (CFE) systems. To characterize this variability, we investigated the effects of two common DNA extraction methodologies, a postprocessing step and manual versus automated preparation on protein production using CFE. We assess the concentration of the DNA template, the quality of the DNA template in terms of physical damage and the quality of the DNA solution in terms of purity resulting from eight DNA preparation workflows. We measure the variance in protein titer and rate of protein production in CFE reactions associated with the biological replicate of the DNA template, the technical replicate DNA solution prepared with the same workflow and the measurement replicate of nominally identical CFE reactions. We offer practical guidance for preparing and characterizing DNA templates to achieve acceptable variability in CFE performance.

7.
Trends Cell Biol ; 32(11): 900-907, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35907702

RESUMEN

Genomically minimal cells, such as JCVI-syn3.0 and JCVI-syn3A, offer an empowering framework to study relationships between genotype and phenotype. With a polygenic basis, the fundamental physiological process of cell division depends on multiple genes of known and unknown function in JCVI-syn3A. A physical description of cellular mechanics can further understanding of the contributions of genes to cell division in this genomically minimal context. We review current knowledge on genes in JCVI-syn3A contributing to two physical parameters relevant to cell division, namely, the surface-area-to-volume ratio and membrane curvature. This physical view of JCVI-syn3A may inform the attribution of gene functions and conserved processes in bacterial physiology, as well as whole-cell models and the engineering of synthetic cells.


Asunto(s)
Proteínas Bacterianas , Proteínas Bacterianas/metabolismo , División Celular/genética
8.
Sci Adv ; 8(12): eabl4354, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35319994

RESUMEN

Engineered molecular circuits that process information in biological systems could address emerging human health and biomanufacturing needs. However, such circuits can be difficult to rationally design and scale. DNA-based strand displacement reactions have demonstrated the largest and most computationally powerful molecular circuits to date but are limited in biological systems due to the difficulty in genetically encoding components. Here, we develop scalable cotranscriptionally encoded RNA strand displacement (ctRSD) circuits that are rationally programmed via base pairing interactions. ctRSD circuits address the limitations of DNA-based strand displacement circuits by isothermally producing circuit components via transcription. We demonstrate circuit programmability in vitro by implementing logic and amplification elements, as well as multilayer cascades. Furthermore, we show that circuit kinetics are accurately predicted by a simple model of coupled transcription and strand displacement, enabling model-driven design. We envision ctRSD circuits will enable the rational design of powerful molecular circuits that operate in biological systems, including living cells.


Asunto(s)
ADN , ARN , ADN/genética , Humanos , Cinética , Lógica , ARN/genética , Recombinación Genética
9.
Methods Mol Biol ; 2433: 3-50, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985735

RESUMEN

Performance variability is a common challenge in cell-free protein production and hinders a wider adoption of these systems for both research and biomanufacturing. While the inherent stochasticity and complexity of biology likely contributes to variability, other systematic factors may also play a role, including the source and preparation of the cell extract, the composition of the supplemental reaction buffer, the facility at which experiments are conducted, and the human operator (Cole et al. ACS Synth Biol 8:2080-2091, 2019). Variability in protein production could also arise from differences in the DNA template-specifically the amount of functional DNA added to a cell-free reaction and the quality of the DNA preparation in terms of contaminants and strand breakage. Here, we present protocols and suggest best practices optimized for DNA template preparation and quantitation for cell-free systems toward reducing variability in cell-free protein production.


Asunto(s)
Replicación del ADN , ADN , Sistema Libre de Células , ADN/genética , Humanos , Proteínas/genética , Reproducibilidad de los Resultados
10.
Commun Biol ; 4(1): 659, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079048

RESUMEN

Single-cell and single-transcript measurement methods have elevated our ability to understand and engineer biological systems. However, defining and comparing performance between methods remains a challenge, in part due to the confounding effects of experimental variability. Here, we propose a generalizable framework for performing multiple methods in parallel using split samples, so that experimental variability is shared between methods. We demonstrate the utility of this framework by performing 12 different methods in parallel to measure the same underlying reference system for cellular response. We compare method performance using quantitative evaluations of bias and resolvability. We attribute differences in method performance to steps along the measurement process such as sample preparation, signal detection, and choice of measurand. Finally, we demonstrate how this framework can be used to benchmark different methods for single-transcript detection. The framework we present here provides a practical way to compare performance of any methods.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Proteínas Bacterianas/genética , Sesgo , Bioingeniería , Escherichia coli/genética , Citometría de Flujo , Perfilación de la Expresión Génica/normas , Perfilación de la Expresión Génica/estadística & datos numéricos , Hibridación in Situ/métodos , Hibridación in Situ/normas , Hibridación in Situ/estadística & datos numéricos , Hibridación Fluorescente in Situ/métodos , Hibridación Fluorescente in Situ/normas , Hibridación Fluorescente in Situ/estadística & datos numéricos , Proteínas Luminiscentes/genética , Microscopía , ARN Bacteriano/análisis , Reproducibilidad de los Resultados , Análisis de la Célula Individual/normas , Análisis de la Célula Individual/estadística & datos numéricos
11.
Cell ; 184(9): 2430-2440.e16, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33784496

RESUMEN

Genomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. Although this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized. To investigate striking morphological variation in JCVI-syn3.0 cells, we present an approach to characterize cell propagation and determine genes affecting cell morphology. Microfluidic chemostats allowed observation of intrinsic cell dynamics that result in irregular morphologies. A genome with 19 genes not retained in JCVI-syn3.0 generated JCVI-syn3A, which presents morphology similar to that of JCVI-syn1.0. We further identified seven of these 19 genes, including two known cell division genes, ftsZ and sepF, a hydrolase of unknown substrate, and four genes that encode membrane-associated proteins of unknown function, which are required together to restore a phenotype similar to that of JCVI-syn1.0. This result emphasizes the polygenic nature of cell division and morphology in a genomically minimal cell.


Asunto(s)
Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , Genoma Bacteriano , Mycoplasma/genética , Biología Sintética/métodos , Proteínas Bacterianas/antagonistas & inhibidores , Sistemas CRISPR-Cas , Ingeniería Genética
12.
Nat Commun ; 11(1): 689, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019919

RESUMEN

Genome-scale engineering holds great potential to impact science, industry, medicine, and society, and recent improvements in DNA synthesis have enabled the manipulation of megabase genomes. However, coordinating and integrating the workflows and large teams necessary for gigabase genome engineering remains a considerable challenge. We examine this issue and recommend a path forward by: 1) adopting and extending existing representations for designs, assembly plans, samples, data, and workflows; 2) developing new technologies for data curation and quality control; 3) conducting fundamental research on genome-scale modeling and design; and 4) developing new legal and contractual infrastructure to facilitate collaboration.


Asunto(s)
Ingeniería Genética , Genoma , Animales , ADN/genética , Replicación del ADN , Bases de Datos Genéticas , Humanos
13.
Curr Opin Syst Biol ; 23: 32-37, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34611570

RESUMEN

Precise engineering of biological systems requires quantitative, high-throughput measurements, exemplified by progress in directed evolution. New approaches allow high-throughput measurements of phenotypes and their corresponding genotypes. When integrated into directed evolution, these quantitative approaches enable the precise engineering of biological function. At the same time, the increasingly routine availability of large, high-quality data sets supports the integration of machine learning with directed evolution. Together, these advances herald striking capabilities for engineering biology.

14.
Artículo en Inglés | MEDLINE | ID: mdl-31214582

RESUMEN

Cyberbiosecurity is an emerging discipline that addresses the unique vulnerabilities and threats that occur at the intersection of cyberspace and biotechnology. Advances in technology and manufacturing are increasing the relevance of cyberbiosecurity to the biopharmaceutical manufacturing community in the United States. Threats may be associated with the biopharmaceutical product itself or with the digital thread of manufacturing of biopharmaceuticals, including those that relate to supply chain and cyberphysical systems. Here, we offer an initial examination of these cyberbiosecurity threats as they stand today, as well as introductory steps toward paths for mitigation of cyberbiosecurity risk for a safer, more secure future.

15.
Science ; 352(6281): aac7341, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27034378

RESUMEN

Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.


Asunto(s)
Biotecnología , ADN/genética , Escherichia coli/genética , Redes Reguladoras de Genes , Algoritmos , Emparejamiento Base , Secuencia de Bases , Lenguajes de Programación , Programas Informáticos , Biología Sintética
16.
Science ; 351(6280): aad6253, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-27013737

RESUMEN

We used whole-genome design and complete chemical synthesis to minimize the 1079-kilobase pair synthetic genome of Mycoplasma mycoides JCVI-syn1.0. An initial design, based on collective knowledge of molecular biology combined with limited transposon mutagenesis data, failed to produce a viable cell. Improved transposon mutagenesis methods revealed a class of quasi-essential genes that are needed for robust growth, explaining the failure of our initial design. Three cycles of design, synthesis, and testing, with retention of quasi-essential genes, produced JCVI-syn3.0 (531 kilobase pairs, 473 genes), which has a genome smaller than that of any autonomously replicating cell found in nature. JCVI-syn3.0 retains almost all genes involved in the synthesis and processing of macromolecules. Unexpectedly, it also contains 149 genes with unknown biological functions. JCVI-syn3.0 is a versatile platform for investigating the core functions of life and for exploring whole-genome design.


Asunto(s)
ADN Bacteriano/síntesis química , Genes Sintéticos/fisiología , Genoma Bacteriano , Mycoplasma mycoides/genética , Células Artificiales , Codón/genética , Elementos Transponibles de ADN , ADN Bacteriano/genética , Genes Esenciales , Genes Sintéticos/genética , Mutagénesis , Proteínas/genética , ARN/genética , Biología Sintética
17.
Soft Matter ; 11(42): 8273-84, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26353028

RESUMEN

There has been much interest in the dimensional properties of double-stranded DNA (dsDNA) confined to nanoscale environments as a problem of fundamental importance in both biological and technological fields. This has led to a series of measurements by fluorescence microscopy of single dsDNA molecules under confinement to nanofluidic slits. Despite the efforts expended on such experiments and the corresponding theory and simulations of confined polymers, a consistent description of changes of the radius of gyration of dsDNA under strong confinement has not yet emerged. Here, we perform molecular dynamics (MD) simulations to identify relevant factors that might account for this inconsistency. Our simulations indicate a significant amplification of excluded volume interactions under confinement at the nanoscale due to the reduction of the effective dimensionality of the system. Thus, any factor influencing the excluded volume interaction of dsDNA, such as ionic strength, solution chemistry, and even fluorescent labels, can greatly influence the dsDNA size under strong confinement. These factors, which are normally less important in bulk solutions of dsDNA at moderate ionic strengths because of the relative weakness of the excluded volume interaction, must therefore be under tight control to achieve reproducible measurements of dsDNA under conditions of dimensional reduction. By simulating semi-flexible polymers over a range of parameter values relevant to the experimental systems and exploiting past theoretical treatments of the dimensional variation of swelling exponents and prefactors, we have developed a novel predictive relationship for the in-plane radius of gyration of long semi-flexible polymers under slit-like confinement. Importantly, these analytic expressions allow us to estimate the properties of dsDNA for the experimentally and biologically relevant range of contour lengths that is not currently accessible by state-of-the-art MD simulations.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Nanoestructuras/química , Soluciones/química
18.
J Res Natl Inst Stand Technol ; 120: 252-69, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26958449

RESUMEN

This article reports a process for rapidly prototyping nanofluidic devices, particularly those comprising slits with microscale widths and nanoscale depths, in silicone. This process consists of designing a nanofluidic device, fabricating a photomask, fabricating a device mold in epoxy photoresist, molding a device in silicone, cutting and punching a molded silicone device, bonding a silicone device to a glass substrate, and filling the device with aqueous solution. By using a bilayer of hard and soft silicone, we have formed and filled nanofluidic slits with depths of less than 400 nm and aspect ratios of width to depth exceeding 250 without collapse of the slits. An important attribute of this article is that the description of this rapid prototyping process is very comprehensive, presenting context and details which are highly relevant to the rational implementation and reliable repetition of the process. Moreover, this process makes use of equipment commonly found in nanofabrication facilities and research laboratories, facilitating the broad adaptation and application of the process. Therefore, while this article specifically informs users of the Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST), we anticipate that this information will be generally useful for the nanofabrication and nanofluidics research communities at large, and particularly useful for neophyte nanofabricators and nanofluidicists.

19.
Electrophoresis ; 34(17): 2522-30, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23784689

RESUMEN

Gradient elution isotachophoresis (GEITP) was demonstrated for DNA purification, concentration, and quantification from crude samples, represented here by soiled buccal swabs, with minimal sample preparation prior to human identification using STR analysis. During GEITP, an electric field applied across leading and trailing electrolyte solutions resulted in isotachophoretic focusing of DNA at the interface between these solutions, while a pressure-driven counterflow controlled the movement of the interface from the sample reservoir into a microfluidic capillary. This counterflow also prevented particulates from fouling or clogging the capillary and reduced or eliminated contamination of the delivered DNA by PCR inhibitors. On-line DNA quantification using laser-induced fluorescence compared favorably with quantitative PCR measurements and potentially eliminates the need for quantitative PCR prior to STR analysis. GEITP promises to address the need for a rapid and robust method to deliver DNA from crude samples to aid the forensic community in human identification.


Asunto(s)
ADN/aislamiento & purificación , Isotacoforesis/métodos , ADN/análisis , ADN/química , Humanos , Masculino , Repeticiones de Microsatélite , Mucosa Bucal/química , Mucosa Bucal/citología , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Manejo de Especímenes
20.
Lab Chip ; 12(6): 1174-82, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22278088

RESUMEN

A complex entropy gradient for confined DNA molecules was engineered for the first time. Following the second law of thermodynamics, this enabled the directed self-transport and self-concentration of DNA molecules. This new nanofluidic method is termed entropophoresis. As implemented in experiments, long DNA molecules were dyed with cyanine dimers, dispersed in a high ionic strength buffer, and confined by a nanofluidic channel with a depth profile approximated by a staircase function. The staircase step depths spanned the transition from strong to moderate confinement. The diffusion of DNA molecules across slitlike steps was ratcheted by entropic forces applied at step edges, so that DNA molecules descended and collected at the bottom of the staircase, as observed by fluorescence microscopy. Different DNA morphologies, lengths, and stoichiometric base pair to dye molecule ratios were tested and determined to influence the rate of transport by entropophoresis. A model of ratcheted diffusion was used to interpret a shifting balance of forces applied to linear DNA molecules of standard length in a complex free energy landscape. Related metrics for the overall and optimum performance of entropophoresis were developed. The device and method reported here transcend current limitations in nanofluidics and present new possibilities in polymer physics, biophysics, separation science, and lab-on-a-chip technology.


Asunto(s)
ADN/aislamiento & purificación , Dispositivos Laboratorio en un Chip , Bacteriófago lambda/química , Bacteriófago lambda/aislamiento & purificación , ADN/química , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , Difusión , Entropía , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA