Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EJNMMI Radiopharm Chem ; 9(1): 50, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904859

RESUMEN

BACKGROUND: In the last decade the development of new PSMA-ligand based radiopharmaceuticals for the imaging and therapy of prostate cancer has been a highly active and important area of research. The most promising derivative in terms of interaction with the antigen and clinical properties has been found to be "PSMA-617", and its lutetium-177 radiolabelled version has recently been approved by EU and USA regulatory agencies for therapeutic purposes. For the above reasons, the development of new derivatives of PSMA-617 radiolabelled with fluorine-18 may still be of great interest. This paper proposes the comparison of two different PSMA-617 derivatives functionalized with NODA and RESCA chelators, respectively, radiolabelled via [18F]AlF2+ complexation. RESULTS: The organic synthesis of two PSMA-617 derivatives and their radiolabelling via [18F]AlF2+ complexation resulted to proceed efficiently and successfully. Moreover, stability in solution and in plasma has been evaluated. The whole radiosynthesis procedure has been fully automated, and the final products have been obtained with radiochemical yield and purity potentially suitable for clinical studies. The biodistribution of the two derivatives was performed both in prostate cancer and glioma tumour models. Compared with the reference [18F]F-PSMA-1007 and [18F]F-PSMA-617-RESCA, [18F]F-PSMA-617-NODA derivative showed a higher uptake in both tumors, faster clearance in non-target organs, and lower uptake in salivary glands. CONCLUSION: PSMA-617 NODA and RESCA derivatives were radiolabelled successfully via [18F]AlF2+ chelation, the former being more stable in solution and human plasma. Moreover, preclinical biodistribution studies showed that [18F]F-PSMA-617-NODA might be of potential interest for clinical applications.

2.
J Labelled Comp Radiopharm ; 65(3): 48-62, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34964165

RESUMEN

In the last decade, the development of new radiopharmaceuticals for the imaging and therapy of prostate cancer has been a highly active and important area of research, especially focusing on the prostate-specific membrane antigen (PSMA), an antigen which is upregulated in prostate, as well as in other tumor cells. A large variety of PSMA ligands have been radiolabeled, to date. Among the various derivatives, PSMA-617 resulted to be one of the most interesting in terms of interaction with the antigen and clinical properties, and its lutetium-177 labeled version has recently been approved by regulatory agencies for therapeutic purposes. For this reasons, the radiolabeling with fluorine-18 of a PSMA-617 derivative might be of interest. Beside other methodologies to radiolabel macromolecules with fluorine-18, the "click-chemistry" approach resulted to be very useful, and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is considered one of most efficient and reliable. This paper proposes the synthesis of a suitable precursor for the radiolabeling with fluorine-18 of a new PSMA-617 derivative. The whole radiosynthetic procedure has been fully automated, and the final product, which proved to be stable in plasma, has been obtained with radiochemical yield and purity suitable for subsequent preclinical studies.


Asunto(s)
Radioisótopos de Flúor , Neoplasias de la Próstata , Línea Celular Tumoral , Dipéptidos , Radioisótopos de Flúor/química , Compuestos Heterocíclicos con 1 Anillo , Humanos , Masculino , Antígeno Prostático Específico , Neoplasias de la Próstata/patología , Radiofármacos
3.
Front Pharmacol ; 9: 1274, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542281

RESUMEN

TLQP-21 is a neuropeptide that is involved in the control of several physiological functions, including energy homeostasis. Since TLQP-21 could oppose the early phase of diet-induced obesity, it has raised a huge interest, but very little is known about its mechanisms of action on peripheral tissues. Our aim was to investigate TLQP-21 distribution in brain and peripheral tissues after systemic administration using positron emission tomography. We report here the radiolabeling of NODA-methyl phenylacetic acid (MPAA) functionalized JMV5763, a short analog of TLQP-21, with [18F]aluminum fluoride. Labeling of JMV5763 was initially performed manually, on a small scale, and then optimized and implemented on a fully automated radiosynthesis system. In the first experiment, mice were injected in the tail vein with [18F]JMV5763, and central and peripheral tissues were collected 13, 30, and 60 min after injection. Significant uptake of [18F]JMV5763 was found in stomach, intestine, kidney, liver, and adrenal gland. In the CNS, very low uptake values were measured in all tested areas, suggesting that the tracer does not efficiently cross the blood-brain barrier. Pretreatment with non-radioactive JMV5763 caused a significant reduction of tracer uptake only in stomach and intestine. In the second experiment, PET analysis was performed in vivo 10-120 min after i.v. [18F]JMV5763 administration. Results were consistent with those of the ex vivo determinations. PET images showed a progressive increase of [18F]JMV5763 uptake in intestine and stomach reaching a peak at 30 min, and decreasing at 120 min. Our results demonstrate that 18F-labeling of TLQP-21 analogs is a suitable method to study its distribution in the body.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...