RESUMEN
Background: Cortical plasticity induced by quadripulse stimulation (QPS) has been shown to correlate with cognitive functions in patients with relapsing-remitting multiple sclerosis (RRMS) and to not be reduced compared to healthy controls (HCs). Objective: This study aimed to compare the degree of QPS-induced plasticity between different subtypes of multiple sclerosis (MS) and HCs and to investigate the association of the degree of plasticity with motor and cognitive functions. We expected lower levels of plasticity in patients with progressive MS (PMS) but not RRMS compared to HCs. Furthermore, we expected to find positive correlations with cognitive and motor performance in patients with MS. Methods: QPS-induced plasticity was compared between 34 patients with PMS, 30 patients with RRMS, and 30 HCs using linear mixed-effects models. The degree of QPS-induced cortical plasticity was correlated with various motor and cognitive outcomes. Results: There were no differences regarding the degree of QPS-induced cortical plasticity between HCs and patients with RRMS (p = 0.86) and PMS (p = 0.18). However, we only found correlations between the level of induced plasticity and both motor and cognitive functions in patients with intact corticospinal tract integrity. Exploratory analysis revealed significantly reduced QPS-induced plasticity in patients with damage compared to intact corticospinal tract integrity (p < 0.001). Conclusion: Our study supports the notion of pyramidal tract integrity being of more relevance for QPS-induced cortical plasticity in MS and related functional significance than the type of disease.
RESUMEN
OBJECTIVE: To investigate the degree of synaptic plasticity in Multiple Sclerosis (MS) patients during acute relapses compared to stable MS patients and healthy controls (HCs) and to analyze its functional relevance. METHODS: Facilitatory quadripulse stimulation (QPS) was applied to the primary motor cortex in 18 acute relapsing and 18 stable MS patients, as well as 18 HCs. The degree of synaptic plasticity was measured by the change in motor evoked potential amplitude following QPS. Symptom recovery was assessed three months after relapse. RESULTS: Synaptic plasticity was induced in all groups. The degree of induced plasticity did not differ between acute relapsing patients, HCs, and stable MS patients. Plasticity was significantly higher in relapsing patients with motor disability compared to relapsing patients without motor disability. In most patients (n = 9, 50%) symptoms had at least partially recovered three months after the relapse, impeding meaningful analysis of the functional relevance of baseline synaptic plasticity. CONCLUSIONS: QPS-induced synaptic plasticity is retained during acute MS relapses. Subgroup analyses suggest that stabilizing metaplastic mechanisms may be more important to prevent motor disability but its functional relevance needs to be verified in larger, longitudinal studies. SIGNIFICANCE: New insights into synaptic plasticity during MS relapses are provided.