Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38883705

RESUMEN

Mutations in RNA splicing factor genes including SF3B1, U2AF1, SRSF2, and ZRSR2 have been reported to contribute to development of myeloid neoplasms including myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (sAML). Chemical tools targeting cells carrying these mutant genes remain limited and underdeveloped. Among the four proteins, mutant U2AF1 (U2AF1mut) acquires an altered 3' splice site selection preference and co-operates with the wild-type U2AF1 (U2AF1wt) to change various gene isoform patterns to support MDS cells survival and proliferation. U2AF1 mutations in MDS cells are always heterozygous and the cell viability is reduced when exposed to additional insult affecting U2AF1wt function. To investigate if the pharmacological inhibition of U2AF1wt function can provoke drug-induced vulnerability of cells harboring U2AF1 mut , we conducted a fragment-based library screening campaign to discover compounds targeting the U2AF homology domain (UHM) in U2AF1 that is required for the formation of the U2AF1/U2AF2 complex to define the 3' splice site. The most promising hit (SF1-8) selectively inhibited growth of leukemia cell lines overexpressingU2AF1 mut and human primary MDS cells carrying U2AF1 mut . RNA-seq analysis of K562-U2AF1mut following treatment with SF1-8 further revealed alteration of isoform patterns for a set of proteins that impair or rescue pathways associated with endocytosis, intracellular vesicle transport, and secretion. Our data suggested that further optimization of SF1-8 is warranted to obtain chemical probes that can be used to evaluate the therapeutic concept of inducing lethality to U2AF1 mut cells by inhibiting the U2AF1wt protein.

2.
iScience ; 27(6): 109991, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38846003

RESUMEN

SIRT5 is a sirtuin deacylase that removes negatively charged lysine modifications, in the mitochondrial matrix and elsewhere in the cell. In benign cells and mouse models, under basal conditions, the phenotypes of SIRT5 deficiency are quite subtle. Here, we identify two homozygous SIRT5 variants in patients suspected to have mitochondrial disease. Both variants, P114T and L128V, are associated with reduced SIRT5 protein stability and impaired biochemical activity, with no evidence of neomorphic or dominant negative properties. The crystal structure of the P114T enzyme was solved and shows only subtle deviations from wild-type. Via CRISPR-Cas9, we generated a mouse model that recapitulates the human P114T mutation; homozygotes show reduced SIRT5 levels and activity, but no obvious metabolic abnormalities, neuropathology, or other gross phenotypes. We conclude that these human SIRT5 variants most likely represent severe hypomorphs, but are likely not by themselves the primary pathogenic cause of the neuropathology observed in the patients.

3.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38105987

RESUMEN

SIRT5 is a sirtuin deacylase that represents the major activity responsible for removal of negatively-charged lysine modifications, in the mitochondrial matrix and elsewhere in the cell. In benign cells and mouse models, under basal non-stressed conditions, the phenotypes of SIRT5 deficiency are generally quite subtle. Here, we identify two homozygous SIRT5 variants in human patients suffering from severe mitochondrial disease. Both variants, P114T and L128V, are associated with reduced SIRT5 protein stability and impaired biochemical activity, with no evidence of neomorphic or dominant negative properties. The crystal structure of the P114T enzyme was solved and shows only subtle deviations from wild-type. Via CRISPR-Cas9, we generate a mouse model that recapitulates the human P114T mutation; homozygotes show reduced SIRT5 levels and activity, but no obvious metabolic abnormalities, neuropathology or other gross evidence of severe disease. We conclude that these human SIRT5 variants most likely represent severe hypomorphs, and are likely not the primary pathogenic cause of the neuropathology observed in the patients.

4.
ACS Pharmacol Transl Sci ; 6(9): 1275-1287, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37705593

RESUMEN

Hematopoietic cell transplantation (HCT) is a proven and potentially curable therapy for hematological malignancies and inherited hematological disease. The main risk of HCT is the development of graft versus host disease (GVHD) acquired in up to 50% of patients. Upregulation of soluble ST2 (sST2) is a key clinical biomarker for GVHD prognosis and was shown to be a potential therapeutic target for GVHD. Agents targeting sST2 to reduce the sST2 level after HCT have the potential to mitigate GVHD progression. Here, we report 32 (or XY52) as the lead ST2 inhibitor from our optimization campaign. XY52 had improved inhibitory activity and metabolic stability in vitro and in vivo. XY52 suppressed proinflammatory T-cell proliferation while increasing regulatory T cells in vitro. In a clinically relevant GVHD model, a 21-day prophylactic regimen of XY52 reduced plasma sST2 and IFN-γ levels and GVHD score and extended survival in mice. XY52 represented a significant improvement over our previous compound, iST2-1, and further optimization of XY52 is warranted. The small-molecule ST2 inhibitors can potentially be used as a biomarker-guided therapy for mitigating GVHD in future clinical applications.

5.
J Med Chem ; 66(15): 10734-10745, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37471629

RESUMEN

Eukaryotic translation initiation factor 4E (eIF4E) is an RNA-binding protein that binds to the m7GpppX-cap at the 5' terminus of coding mRNAs to initiate cap-dependent translation. While all cells require cap-dependent translation, cancer cells become addicted to enhanced translational capacity, driving the production of oncogenic proteins involved in proliferation, evasion of apoptosis, metastasis, and angiogenesis, among other cancerous phenotypes. eIF4E is the rate-limiting translation factor, and its activation has been shown to drive cancer initiation, progression, metastasis, and drug resistance. These findings have established eIF4E as a translational oncogene and promising, albeit challenging, anti-cancer therapeutic target. Although significant effort has been put forth toward inhibiting eIF4E, the design of cell-permeable, cap-competitive inhibitors remains a challenge. Herein, we describe our work toward solving this long-standing challenge. By employing an acyclic nucleoside phosphonate prodrug strategy, we report the synthesis of cell-permeable inhibitors of eIF4E binding to capped mRNA to inhibit cap-dependent translation.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Neoplasias , Factor 4E Eucariótico de Iniciación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al ARN/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Neoplasias/tratamiento farmacológico
6.
J Med Chem ; 66(12): 8222-8237, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37289649

RESUMEN

Starting from a nonselective bromodomain and extraterminal (BET) inhibitor and a cereblon ligand, we have used precise conformational control for the development of two potent and highly selective BRD4 degraders, BD-7148 and BD-9136. These compounds induce rapid degradation of BRD4 protein in cells at concentrations as low as 1 nM and demonstrate ≥1000-fold degradation selectivity over BRD2 or BRD3 protein. Proteomic analysis of >5700 proteins confirmed their highly selective BRD4 degradation. A single dose of BD-9136 selectively and effectively depletes BRD4 protein in tumor tissues for >48 h. BD-9136 effectively inhibits tumor growth without adverse effects on mice and is more efficacious than the corresponding pan BET inhibitor. This study suggests selective degradation of BRD4 as a strategy for the treatment of human cancers and demonstrates a strategy for the design of highly selective PROTAC degraders.


Asunto(s)
Neoplasias , Proteínas Nucleares , Humanos , Ratones , Animales , Proteínas de Ciclo Celular , Factores de Transcripción , Proteómica
7.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292917

RESUMEN

Eukaryotic translation initiation factor 4E (eIF4E) is an RNA-binding protein that binds to the m 7 GpppX-cap at the 5' terminus of coding mRNAs to initiate cap-dependent translation. While all cells require cap-dependent translation, cancer cells become addicted to enhanced translational capacity, driving the production of oncogenic proteins involved in proliferation, evasion of apoptosis, metastasis, and angiogenesis among other cancerous phenotypes. eIF4E is the rate-limiting translation factor and its activation has been shown to drive cancer initiation, progression, metastasis, and drug resistance. These findings have established eIF4E as a translational oncogene and promising, albeit challenging, anti-cancer therapeutic target. Although significant effort has been put forth towards inhibiting eIF4E, the design of cell-permeable, cap-competitive inhibitors remains a challenge. Herein, we describe our work towards solving this long-standing challenge. By employing an acyclic nucleoside phosphonate prodrug strategy, we report the synthesis of cell-permeable inhibitors of eIF4E binding to capped mRNA to inhibit cap-dependent translation.

8.
Pharmaceuticals (Basel) ; 16(5)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37242488

RESUMEN

Treatment options are lacking to prevent photoreceptor death and subsequent vision loss. Previously, we demonstrated that reprogramming metabolism via the pharmacologic activation of PKM2 is a novel photoreceptor neuroprotective strategy. However, the features of the tool compound used in those studies, ML-265, preclude its advancement as an intraocular, clinical candidate. This study sought to develop the next generation of small-molecule PKM2 activators, aimed specifically for delivery into the eye. Compounds were developed that replaced the thienopyrrolopyridazinone core of ML-265 and modified the aniline and methyl sulfoxide functional groups. Compound 2 demonstrated that structural changes to the ML-265 scaffold are tolerated from a potency and efficacy standpoint, allow for a similar binding mode to the target, and circumvent apoptosis in models of outer retinal stress. To overcome the low solubility and problematic functional groups of ML-265, compound 2's efficacious and versatile core structure for the incorporation of diverse functional groups was then utilized to develop novel PKM2 activators with improved solubility, lack of structural alerts, and retained potency. No other molecules are in the pharmaceutical pipeline for the metabolic reprogramming of photoreceptors. Thus, this study is the first to cultivate the next generation of novel, structurally diverse, small-molecule PKM2 activators for delivery into the eye.

10.
ACS Med Chem Lett ; 14(4): 450-457, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37077390

RESUMEN

RNA splicing is a biological process to generate mature mRNA (mRNA) by removing introns and annexing exons in the nascent RNA transcript and is executed by a multiprotein complex called spliceosome. To aid RNA splicing, a class of splicing factors use an atypical RNA recognition domain (UHM) to bind with U2AF ligand motifs (ULMs) in proteins to form modules that recognize splice sites and splicing regulatory elements on mRNA. Mutations of UHM containing splicing factors have been found frequently in myeloid neoplasms. To profile the selectivity of UHMs for inhibitor development, we established binding assays to measure the binding activities between UHM domains and ULM peptides and a set of small-molecule inhibitors. Additionally, we computationally analyzed the targeting potential of the UHM domains by small-molecule inhibitors. Our study provided the binding assessment of UHM domains to diverse ligands that may guide development of selective UHM domain inhibitors in the future.

11.
Nat Chem Biol ; 19(6): 703-711, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36732620

RESUMEN

Signal transducer and activator of transcription 5 (STAT5) is an attractive therapeutic target, but successful targeting of STAT5 has proved to be difficult. Here we report the development of AK-2292 as a first, potent and selective small-molecule degrader of both STAT5A and STAT5B isoforms. AK-2292 induces degradation of STAT5A/B proteins with an outstanding selectivity over all other STAT proteins and more than 6,000 non-STAT proteins, leading to selective inhibition of STAT5 activity in cells. AK-2292 effectively induces STAT5 depletion in normal mouse tissues and human chronic myeloid leukemia (CML) xenograft tissues and achieves tumor regression in two CML xenograft mouse models at well-tolerated dose schedules. AK-2292 is not only a powerful research tool with which to investigate the biology of STAT5 and the therapeutic potential of selective STAT5 protein depletion and inhibition but also a promising lead compound toward ultimate development of a STAT5-targeted therapy.


Asunto(s)
Neoplasias , Factor de Transcripción STAT5 , Humanos , Ratones , Animales , Factor de Transcripción STAT5/metabolismo
12.
J Med Chem ; 66(4): 2717-2743, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36735833

RESUMEN

STAT5 is an attractive therapeutic target for human cancers. We report herein the discovery of a potent and selective STAT5 degrader with strong antitumor activity in vivo. We first obtained small-molecule ligands with sub-micromolar to low micromolar binding affinities to STAT5 and STAT6 SH2 domains and determined co-crystal structures of three such ligands in complex with STAT5A. We successfully transformed these ligands into potent and selective STAT5 degraders using the PROTAC technology with AK-2292 as the best compound. AK-2292 effectively induces degradation of STAT5A, STAT5B, and phosphorylated STAT5 proteins in a concentration- and time-dependent manner in acute myeloid leukemia (AML) cell lines and demonstrates excellent degradation selectivity for STAT5 over all other STAT members. It exerts potent and specific cell growth inhibitory activity in AML cell lines with high levels of phosphorylated STAT5. AK-2292 effectively reduces STAT5 protein in vivo and achieves strong antitumor activity in mice at well-tolerated dose schedules.


Asunto(s)
Leucemia Mieloide Aguda , Factor de Transcripción STAT5 , Humanos , Animales , Ratones , Factor de Transcripción STAT5/metabolismo , Ligandos , Leucemia Mieloide Aguda/tratamiento farmacológico , Dominios Homologos src , Línea Celular
13.
Clin Cancer Res ; 28(24): 5455-5468, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36048524

RESUMEN

PURPOSE: Development of B-cell lymphoma 2 (BCL-2)-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575). EXPERIMENTAL DESIGN: Computational modeling was used to design "lead" compounds. Biochemical binding, mitochondrial BH3 profiling, and cell-based viability or apoptosis assays were used to determine the selectivity and potency of BCL-2 inhibitor lisaftoclax. The antitumor effects of lisaftoclax were also evaluated in several xenograft models. RESULTS: Lisaftoclax selectively binds BCL-2 (Ki < 0.1 nmol/L), disrupts BCL-2:BIM complexes, and compromises mitochondrial outer membrane potential, culminating in BAX/BAK-dependent, caspase-mediated apoptosis. Lisaftoclax exerted strong antitumor activity in hematologic cancer cell lines and tumor cells from patients with chronic lymphocytic leukemia, multiple myeloma, or Waldenström macroglobulinemia. After lisaftoclax treatment, prodeath proteins BCL-2‒like protein 11 (BIM) and Noxa increased, and BIM translocated from cytosol to mitochondria. Consistent with these apoptotic activities, lisaftoclax entered malignant cells rapidly, reached plateau in 2 hours, and significantly downregulated mitochondrial respiratory function and ATP production. Furthermore, lisaftoclax inhibited tumor growth in xenograft models, correlating with caspase activation, poly (ADP-ribose) polymerase 1 cleavage, and pharmacokinetics of the compound. Lisaftoclax combined with rituximab or bendamustine/rituximab enhanced antitumor activity in vivo. CONCLUSIONS: These findings demonstrate that lisaftoclax is a novel, orally bioavailable BH3 mimetic BCL-2-selective inhibitor with considerable potential for the treatment of certain hematologic malignancies.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Antineoplásicos/farmacología , Apoptosis , Proteína 11 Similar a Bcl2 , Caspasas , Línea Celular Tumoral , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Rituximab/farmacología
14.
Bioorg Med Chem ; 71: 116942, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35930851

RESUMEN

An elevated plasma level of soluble ST2 (sST2) is a risk biomarker for graft-versus-host disease (GVHD) and death in patients receiving hematopoietic cell transplantation (HCT). sST2 functions as a trap for IL-33 and amplifies the pro-inflammatory type 1 and 17 response while suppressing the tolerogenic type 2 and regulatory T cells activation during GVHD development. We previously identified small-molecule ST2 inhibitors particularly iST2-1 that reduces plasma sST2 levels and improved survival in two animal models. Here, we reported the structure-activity relationship of the furanylmethylpyrrolidine-based ST2 inhibitors based on iST2-1. Based on the biochemical AlphaLISA assay, we improved the activity of iST2-1 by 6-fold (∼6 µM in IC50 values) in the inhibition of ST2/IL-33 and confirmed the activities of the compounds in a cellular reporter assay. To determine the inhibition of the alloreactivity in vitro, we used the mixed lymphocyte reaction assay to demonstrate that our ST2 inhibitors decreased CD4+ and CD8+ T cells proliferation and increased Treg population. The data presented in this work are critical to the development of ST2 inhibitors in future.


Asunto(s)
Enfermedad Injerto contra Huésped , Animales , Linfocitos T CD8-positivos/metabolismo , Furanos , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Pirrolidinas/farmacología , Relación Estructura-Actividad
15.
J Phys Chem B ; 126(12): 2394-2406, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35294837

RESUMEN

Cytokine signaling initiated by the binding of the cytokine receptors to cytokines plays important roles in immune regulation and diseases. Structurally, cytokine receptors interact with cytokines via an extensive, rugged interface that represents a challenge in inhibitor development. Our computational analysis has previously indicated that butyric acid, mimicking acidic residues, preferentially binds to sites in ST2 (Stimulation-2) that interact with acidic residues of IL33, the endogenous cytokine for ST2. To investigate if a charged group in small molecules facilitates ligand binding to ST2, we developed a biochemical homogeneous time resolved fluorescence assay to determine the inhibition of ST2/IL33 binding by five molecules containing an aromatic ring and a charged group. Three molecules, including niacin, salicylic acid, and benzamidine, exhibit inhibition activities at millimolar concentrations. We further employed the computational cosolvent mapping analysis to identify a shared mode of interaction between niacin, salicylic acid, and ST2. The mode of interaction was further confirmed by four analogous compounds that exhibited similar or improved activities. Our study provided the evidence of inhibition of ST2 and IL33 binding by salicylic acid and analogs. The results suggest that biological activity of salicylic acid may be partly mediated through modulating extracellular cytokine receptors and cytokine interaction.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Citocinas , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Ácido Salicílico/farmacología
16.
J Med Chem ; 64(19): 14540-14556, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34613724

RESUMEN

Embryonic ectoderm development (EED) is a promising therapeutic target for human cancers and other diseases. We report herein the discovery of exceptionally potent and efficacious EED inhibitors. By conformational restriction of a previously reported EED inhibitor, we obtained a potent lead compound. Further optimization of the lead yielded exceptionally potent EED inhibitors. The best compound EEDi-5273 binds to EED with an IC50 value of 0.2 nM and inhibits the KARPAS422 cell growth with an IC50 value of 1.2 nM. It demonstrates an excellent PK and ADME profile, and its oral administration leads to complete and persistent tumor regression in the KARPAS422 xenograft model with no signs of toxicity. Co-crystal structures of two potent EED inhibitors with EED provide a solid structural basis for their high-affinity binding. EEDi-5273 is a promising EED inhibitor for further advanced preclinical development for the treatment of human cancer and other human diseases.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Administración Oral , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/patología , Relación Estructura-Actividad
17.
J Am Chem Soc ; 143(37): 15271-15278, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34494819

RESUMEN

The human long interspersed nuclear element 1 (LINE1) has been implicated in numerous diseases and has been suggested to play a significant role in genetic evolution. Open reading frame 1 protein (ORF1p) is one of the two proteins encoded in this self-replicating mobile genetic element, both of which are essential for retrotransposition. The structure of the three-stranded coiled-coil domain of ORF1p was recently solved and showed the presence of tris-cysteine layers in the interior of the coiled-coil that could function as metal binding sites. Here, we demonstrate that ORF1p binds Pb(II). We designed a model peptide, GRCSL16CL23C, to mimic two of the ORF1p Cys3 layers and crystallized the peptide both as the apo-form and in the presence of Pb(II). Structural comparison of the ORF1p with apo-(GRCSL16CL23C)3 shows very similar Cys3 layers, preorganized for Pb(II) binding. We propose that exposure to heavy metals, such as lead, could influence directly the structural parameters of ORF1p and thus impact the overall LINE1 retrotransposition frequency, directly relating heavy metal exposure to genetic modification.


Asunto(s)
Desoxirribonucleasa I/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Plomo/farmacología , Cristalografía por Rayos X , Desoxirribonucleasa I/genética , Escherichia coli/metabolismo , Humanos , Plomo/química , Modelos Moleculares , Sistemas de Lectura Abierta , Unión Proteica , Conformación Proteica
18.
J Med Chem ; 64(14): 10333-10349, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34196551

RESUMEN

Targeting the menin-MLL protein-protein interaction is being pursued as a new therapeutic strategy for the treatment of acute leukemia carrying MLL-rearrangements (MLLr leukemia). Herein, we report M-1121, a covalent and orally active inhibitor of the menin-MLL interaction capable of achieving complete and persistent tumor regression. M-1121 establishes covalent interactions with Cysteine 329 located in the MLL binding pocket of menin and potently inhibits growth of acute leukemia cell lines carrying MLL translocations with no activity in cell lines with wild-type MLL. Consistent with the mechanism of action, M-1121 drives dose-dependent down-regulation of HOXA9 and MEIS1 gene expression in the MLL-rearranged MV4;11 leukemia cell line. M-1121 is orally bioavailable and shows potent antitumor activity in vivo with tumor regressions observed at tolerated doses in the MV4;11 subcutaneous and disseminated models of MLL-rearranged leukemia. Together, our findings support development of an orally active covalent menin inhibitor as a new therapy for MLLr leukemia.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Modelos Moleculares , Estructura Molecular , Proteínas Proto-Oncogénicas/metabolismo , Relación Estructura-Actividad
19.
ACS Med Chem Lett ; 12(6): 996-1004, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34141084

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. We report herein our extensive in vitro and in vivo evaluations of SD-91, the product of the hydrolysis of our previously reported STAT3 degrader SD-36. SD-91 binds to STAT3 protein with a high affinity and displays >300-fold selectivity over other STAT family protein members. SD-91 potently and effectively induces degradation of STAT3 protein and displays a high selectivity over other STAT members and >7000 non-STAT proteins in cells. A single administration of SD-91 selectively depletes STAT3 protein in tumor tissues with a persistent effect. SD-91 achieves complete and long-lasting tumor regression in the MOLM-16 xenograft model in mice even with weekly administration. Hence, SD-91 is a potent, highly selective, and efficacious STAT3 degrader for extensive evaluations for the treatment of human cancers and other diseases for which STAT3 plays a key role.

20.
Nat Commun ; 12(1): 2621, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976147

RESUMEN

Cullin-RING E3 ligases (CRLs) regulate the turnover of approximately 20% of mammalian cellular proteins. Neddylation of individual cullin proteins is essential for the activation of each CRL. We report herein the discovery of DI-1548 and DI-1859 as two potent, selective and covalent DCN1 inhibitors. These inhibitors selectively inhibit neddylation of cullin 3 in cells at low nanomolar concentrations and are 2-3 orders of magnitude more potent than our previously reported reversible DCN1 inhibitor. Mass spectrometric analysis and co-crystal structures reveal that these compounds employ a unique mechanism of covalent bond formation with DCN1. DI-1859 induces a robust increase of NRF2 protein, a CRL3 substrate, in mouse liver and effectively protects mice from acetaminophen-induced liver damage. Taken together, this study demonstrates the therapeutic potential of selective inhibition of cullin neddylation.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Proteínas Cullin/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Sustancias Protectoras/farmacología , Acetaminofén/administración & dosificación , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Proteína NEDD8/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico , Procesamiento Proteico-Postraduccional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...