Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38105987

RESUMEN

SIRT5 is a sirtuin deacylase that represents the major activity responsible for removal of negatively-charged lysine modifications, in the mitochondrial matrix and elsewhere in the cell. In benign cells and mouse models, under basal non-stressed conditions, the phenotypes of SIRT5 deficiency are generally quite subtle. Here, we identify two homozygous SIRT5 variants in human patients suffering from severe mitochondrial disease. Both variants, P114T and L128V, are associated with reduced SIRT5 protein stability and impaired biochemical activity, with no evidence of neomorphic or dominant negative properties. The crystal structure of the P114T enzyme was solved and shows only subtle deviations from wild-type. Via CRISPR-Cas9, we generate a mouse model that recapitulates the human P114T mutation; homozygotes show reduced SIRT5 levels and activity, but no obvious metabolic abnormalities, neuropathology or other gross evidence of severe disease. We conclude that these human SIRT5 variants most likely represent severe hypomorphs, and are likely not the primary pathogenic cause of the neuropathology observed in the patients.

2.
ACS Pharmacol Transl Sci ; 6(9): 1275-1287, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37705593

RESUMEN

Hematopoietic cell transplantation (HCT) is a proven and potentially curable therapy for hematological malignancies and inherited hematological disease. The main risk of HCT is the development of graft versus host disease (GVHD) acquired in up to 50% of patients. Upregulation of soluble ST2 (sST2) is a key clinical biomarker for GVHD prognosis and was shown to be a potential therapeutic target for GVHD. Agents targeting sST2 to reduce the sST2 level after HCT have the potential to mitigate GVHD progression. Here, we report 32 (or XY52) as the lead ST2 inhibitor from our optimization campaign. XY52 had improved inhibitory activity and metabolic stability in vitro and in vivo. XY52 suppressed proinflammatory T-cell proliferation while increasing regulatory T cells in vitro. In a clinically relevant GVHD model, a 21-day prophylactic regimen of XY52 reduced plasma sST2 and IFN-γ levels and GVHD score and extended survival in mice. XY52 represented a significant improvement over our previous compound, iST2-1, and further optimization of XY52 is warranted. The small-molecule ST2 inhibitors can potentially be used as a biomarker-guided therapy for mitigating GVHD in future clinical applications.

3.
Pharmaceuticals (Basel) ; 16(5)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37242488

RESUMEN

Treatment options are lacking to prevent photoreceptor death and subsequent vision loss. Previously, we demonstrated that reprogramming metabolism via the pharmacologic activation of PKM2 is a novel photoreceptor neuroprotective strategy. However, the features of the tool compound used in those studies, ML-265, preclude its advancement as an intraocular, clinical candidate. This study sought to develop the next generation of small-molecule PKM2 activators, aimed specifically for delivery into the eye. Compounds were developed that replaced the thienopyrrolopyridazinone core of ML-265 and modified the aniline and methyl sulfoxide functional groups. Compound 2 demonstrated that structural changes to the ML-265 scaffold are tolerated from a potency and efficacy standpoint, allow for a similar binding mode to the target, and circumvent apoptosis in models of outer retinal stress. To overcome the low solubility and problematic functional groups of ML-265, compound 2's efficacious and versatile core structure for the incorporation of diverse functional groups was then utilized to develop novel PKM2 activators with improved solubility, lack of structural alerts, and retained potency. No other molecules are in the pharmaceutical pipeline for the metabolic reprogramming of photoreceptors. Thus, this study is the first to cultivate the next generation of novel, structurally diverse, small-molecule PKM2 activators for delivery into the eye.

5.
ACS Med Chem Lett ; 14(4): 450-457, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37077390

RESUMEN

RNA splicing is a biological process to generate mature mRNA (mRNA) by removing introns and annexing exons in the nascent RNA transcript and is executed by a multiprotein complex called spliceosome. To aid RNA splicing, a class of splicing factors use an atypical RNA recognition domain (UHM) to bind with U2AF ligand motifs (ULMs) in proteins to form modules that recognize splice sites and splicing regulatory elements on mRNA. Mutations of UHM containing splicing factors have been found frequently in myeloid neoplasms. To profile the selectivity of UHMs for inhibitor development, we established binding assays to measure the binding activities between UHM domains and ULM peptides and a set of small-molecule inhibitors. Additionally, we computationally analyzed the targeting potential of the UHM domains by small-molecule inhibitors. Our study provided the binding assessment of UHM domains to diverse ligands that may guide development of selective UHM domain inhibitors in the future.

6.
Nat Chem Biol ; 19(6): 703-711, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36732620

RESUMEN

Signal transducer and activator of transcription 5 (STAT5) is an attractive therapeutic target, but successful targeting of STAT5 has proved to be difficult. Here we report the development of AK-2292 as a first, potent and selective small-molecule degrader of both STAT5A and STAT5B isoforms. AK-2292 induces degradation of STAT5A/B proteins with an outstanding selectivity over all other STAT proteins and more than 6,000 non-STAT proteins, leading to selective inhibition of STAT5 activity in cells. AK-2292 effectively induces STAT5 depletion in normal mouse tissues and human chronic myeloid leukemia (CML) xenograft tissues and achieves tumor regression in two CML xenograft mouse models at well-tolerated dose schedules. AK-2292 is not only a powerful research tool with which to investigate the biology of STAT5 and the therapeutic potential of selective STAT5 protein depletion and inhibition but also a promising lead compound toward ultimate development of a STAT5-targeted therapy.


Asunto(s)
Neoplasias , Factor de Transcripción STAT5 , Humanos , Ratones , Animales , Factor de Transcripción STAT5/metabolismo
7.
J Med Chem ; 66(4): 2717-2743, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36735833

RESUMEN

STAT5 is an attractive therapeutic target for human cancers. We report herein the discovery of a potent and selective STAT5 degrader with strong antitumor activity in vivo. We first obtained small-molecule ligands with sub-micromolar to low micromolar binding affinities to STAT5 and STAT6 SH2 domains and determined co-crystal structures of three such ligands in complex with STAT5A. We successfully transformed these ligands into potent and selective STAT5 degraders using the PROTAC technology with AK-2292 as the best compound. AK-2292 effectively induces degradation of STAT5A, STAT5B, and phosphorylated STAT5 proteins in a concentration- and time-dependent manner in acute myeloid leukemia (AML) cell lines and demonstrates excellent degradation selectivity for STAT5 over all other STAT members. It exerts potent and specific cell growth inhibitory activity in AML cell lines with high levels of phosphorylated STAT5. AK-2292 effectively reduces STAT5 protein in vivo and achieves strong antitumor activity in mice at well-tolerated dose schedules.


Asunto(s)
Leucemia Mieloide Aguda , Factor de Transcripción STAT5 , Humanos , Animales , Ratones , Factor de Transcripción STAT5/metabolismo , Ligandos , Leucemia Mieloide Aguda/tratamiento farmacológico , Dominios Homologos src , Línea Celular
8.
Clin Cancer Res ; 28(24): 5455-5468, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36048524

RESUMEN

PURPOSE: Development of B-cell lymphoma 2 (BCL-2)-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575). EXPERIMENTAL DESIGN: Computational modeling was used to design "lead" compounds. Biochemical binding, mitochondrial BH3 profiling, and cell-based viability or apoptosis assays were used to determine the selectivity and potency of BCL-2 inhibitor lisaftoclax. The antitumor effects of lisaftoclax were also evaluated in several xenograft models. RESULTS: Lisaftoclax selectively binds BCL-2 (Ki < 0.1 nmol/L), disrupts BCL-2:BIM complexes, and compromises mitochondrial outer membrane potential, culminating in BAX/BAK-dependent, caspase-mediated apoptosis. Lisaftoclax exerted strong antitumor activity in hematologic cancer cell lines and tumor cells from patients with chronic lymphocytic leukemia, multiple myeloma, or Waldenström macroglobulinemia. After lisaftoclax treatment, prodeath proteins BCL-2‒like protein 11 (BIM) and Noxa increased, and BIM translocated from cytosol to mitochondria. Consistent with these apoptotic activities, lisaftoclax entered malignant cells rapidly, reached plateau in 2 hours, and significantly downregulated mitochondrial respiratory function and ATP production. Furthermore, lisaftoclax inhibited tumor growth in xenograft models, correlating with caspase activation, poly (ADP-ribose) polymerase 1 cleavage, and pharmacokinetics of the compound. Lisaftoclax combined with rituximab or bendamustine/rituximab enhanced antitumor activity in vivo. CONCLUSIONS: These findings demonstrate that lisaftoclax is a novel, orally bioavailable BH3 mimetic BCL-2-selective inhibitor with considerable potential for the treatment of certain hematologic malignancies.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Antineoplásicos/farmacología , Apoptosis , Proteína 11 Similar a Bcl2 , Caspasas , Línea Celular Tumoral , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Rituximab/farmacología
9.
Bioorg Med Chem ; 71: 116942, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35930851

RESUMEN

An elevated plasma level of soluble ST2 (sST2) is a risk biomarker for graft-versus-host disease (GVHD) and death in patients receiving hematopoietic cell transplantation (HCT). sST2 functions as a trap for IL-33 and amplifies the pro-inflammatory type 1 and 17 response while suppressing the tolerogenic type 2 and regulatory T cells activation during GVHD development. We previously identified small-molecule ST2 inhibitors particularly iST2-1 that reduces plasma sST2 levels and improved survival in two animal models. Here, we reported the structure-activity relationship of the furanylmethylpyrrolidine-based ST2 inhibitors based on iST2-1. Based on the biochemical AlphaLISA assay, we improved the activity of iST2-1 by 6-fold (∼6 µM in IC50 values) in the inhibition of ST2/IL-33 and confirmed the activities of the compounds in a cellular reporter assay. To determine the inhibition of the alloreactivity in vitro, we used the mixed lymphocyte reaction assay to demonstrate that our ST2 inhibitors decreased CD4+ and CD8+ T cells proliferation and increased Treg population. The data presented in this work are critical to the development of ST2 inhibitors in future.


Asunto(s)
Enfermedad Injerto contra Huésped , Animales , Linfocitos T CD8-positivos/metabolismo , Furanos , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Pirrolidinas/farmacología , Relación Estructura-Actividad
10.
J Phys Chem B ; 126(12): 2394-2406, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35294837

RESUMEN

Cytokine signaling initiated by the binding of the cytokine receptors to cytokines plays important roles in immune regulation and diseases. Structurally, cytokine receptors interact with cytokines via an extensive, rugged interface that represents a challenge in inhibitor development. Our computational analysis has previously indicated that butyric acid, mimicking acidic residues, preferentially binds to sites in ST2 (Stimulation-2) that interact with acidic residues of IL33, the endogenous cytokine for ST2. To investigate if a charged group in small molecules facilitates ligand binding to ST2, we developed a biochemical homogeneous time resolved fluorescence assay to determine the inhibition of ST2/IL33 binding by five molecules containing an aromatic ring and a charged group. Three molecules, including niacin, salicylic acid, and benzamidine, exhibit inhibition activities at millimolar concentrations. We further employed the computational cosolvent mapping analysis to identify a shared mode of interaction between niacin, salicylic acid, and ST2. The mode of interaction was further confirmed by four analogous compounds that exhibited similar or improved activities. Our study provided the evidence of inhibition of ST2 and IL33 binding by salicylic acid and analogs. The results suggest that biological activity of salicylic acid may be partly mediated through modulating extracellular cytokine receptors and cytokine interaction.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Citocinas , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Ácido Salicílico/farmacología
11.
J Med Chem ; 64(19): 14540-14556, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34613724

RESUMEN

Embryonic ectoderm development (EED) is a promising therapeutic target for human cancers and other diseases. We report herein the discovery of exceptionally potent and efficacious EED inhibitors. By conformational restriction of a previously reported EED inhibitor, we obtained a potent lead compound. Further optimization of the lead yielded exceptionally potent EED inhibitors. The best compound EEDi-5273 binds to EED with an IC50 value of 0.2 nM and inhibits the KARPAS422 cell growth with an IC50 value of 1.2 nM. It demonstrates an excellent PK and ADME profile, and its oral administration leads to complete and persistent tumor regression in the KARPAS422 xenograft model with no signs of toxicity. Co-crystal structures of two potent EED inhibitors with EED provide a solid structural basis for their high-affinity binding. EEDi-5273 is a promising EED inhibitor for further advanced preclinical development for the treatment of human cancer and other human diseases.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Administración Oral , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/patología , Relación Estructura-Actividad
12.
J Am Chem Soc ; 143(37): 15271-15278, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34494819

RESUMEN

The human long interspersed nuclear element 1 (LINE1) has been implicated in numerous diseases and has been suggested to play a significant role in genetic evolution. Open reading frame 1 protein (ORF1p) is one of the two proteins encoded in this self-replicating mobile genetic element, both of which are essential for retrotransposition. The structure of the three-stranded coiled-coil domain of ORF1p was recently solved and showed the presence of tris-cysteine layers in the interior of the coiled-coil that could function as metal binding sites. Here, we demonstrate that ORF1p binds Pb(II). We designed a model peptide, GRCSL16CL23C, to mimic two of the ORF1p Cys3 layers and crystallized the peptide both as the apo-form and in the presence of Pb(II). Structural comparison of the ORF1p with apo-(GRCSL16CL23C)3 shows very similar Cys3 layers, preorganized for Pb(II) binding. We propose that exposure to heavy metals, such as lead, could influence directly the structural parameters of ORF1p and thus impact the overall LINE1 retrotransposition frequency, directly relating heavy metal exposure to genetic modification.


Asunto(s)
Desoxirribonucleasa I/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Plomo/farmacología , Cristalografía por Rayos X , Desoxirribonucleasa I/genética , Escherichia coli/metabolismo , Humanos , Plomo/química , Modelos Moleculares , Sistemas de Lectura Abierta , Unión Proteica , Conformación Proteica
13.
ACS Med Chem Lett ; 12(6): 996-1004, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34141084

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. We report herein our extensive in vitro and in vivo evaluations of SD-91, the product of the hydrolysis of our previously reported STAT3 degrader SD-36. SD-91 binds to STAT3 protein with a high affinity and displays >300-fold selectivity over other STAT family protein members. SD-91 potently and effectively induces degradation of STAT3 protein and displays a high selectivity over other STAT members and >7000 non-STAT proteins in cells. A single administration of SD-91 selectively depletes STAT3 protein in tumor tissues with a persistent effect. SD-91 achieves complete and long-lasting tumor regression in the MOLM-16 xenograft model in mice even with weekly administration. Hence, SD-91 is a potent, highly selective, and efficacious STAT3 degrader for extensive evaluations for the treatment of human cancers and other diseases for which STAT3 plays a key role.

14.
Nat Commun ; 12(1): 2621, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976147

RESUMEN

Cullin-RING E3 ligases (CRLs) regulate the turnover of approximately 20% of mammalian cellular proteins. Neddylation of individual cullin proteins is essential for the activation of each CRL. We report herein the discovery of DI-1548 and DI-1859 as two potent, selective and covalent DCN1 inhibitors. These inhibitors selectively inhibit neddylation of cullin 3 in cells at low nanomolar concentrations and are 2-3 orders of magnitude more potent than our previously reported reversible DCN1 inhibitor. Mass spectrometric analysis and co-crystal structures reveal that these compounds employ a unique mechanism of covalent bond formation with DCN1. DI-1859 induces a robust increase of NRF2 protein, a CRL3 substrate, in mouse liver and effectively protects mice from acetaminophen-induced liver damage. Taken together, this study demonstrates the therapeutic potential of selective inhibition of cullin neddylation.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Proteínas Cullin/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Sustancias Protectoras/farmacología , Acetaminofén/administración & dosificación , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Proteína NEDD8/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico , Procesamiento Proteico-Postraduccional/efectos de los fármacos
15.
Sci Rep ; 11(1): 656, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436903

RESUMEN

Lectins, carbohydrate-binding proteins, have been regarded as potential antiviral agents, as some can bind glycans on viral surface glycoproteins and inactivate their functions. However, clinical development of lectins has been stalled by the mitogenicity of many of these proteins, which is the ability to stimulate deleterious proliferation, especially of immune cells. We previously demonstrated that the mitogenic and antiviral activities of a lectin (banana lectin, BanLec) can be separated via a single amino acid mutation, histidine to threonine at position 84 (H84T), within the third Greek key. The resulting lectin, H84T BanLec, is virtually non-mitogenic but retains antiviral activity. Decreased mitogenicity was associated with disruption of pi-pi stacking between two aromatic amino acids. To examine whether we could provide further proof-of-principle of the ability to separate these two distinct lectin functions, we identified another lectin, Malaysian banana lectin (Malay BanLec), with similar structural features as BanLec, including pi-pi stacking, but with only 63% amino acid identity, and showed that it is both mitogenic and potently antiviral. We then engineered an F84T mutation expected to disrupt pi-pi stacking, analogous to H84T. As predicted, F84T Malay BanLec (F84T) was less mitogenic than wild type. However, F84T maintained strong antiviral activity and inhibited replication of HIV, Ebola, and other viruses. The F84T mutation disrupted pi-pi stacking without disrupting the overall lectin structure. These findings show that pi-pi stacking in the third Greek key is a conserved mitogenic motif in these two jacalin-related lectins BanLec and Malay BanLec, and further highlight the potential to rationally engineer antiviral lectins for therapeutic purposes.


Asunto(s)
Antivirales/farmacología , Infecciones por VIH/tratamiento farmacológico , Lectinas/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Mitógenos/farmacología , Musa/química , Replicación Viral , Proliferación Celular , Células Cultivadas , Ebolavirus/efectos de los fármacos , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Humanos , Lectinas/química , Lectinas/genética , Leucocitos Mononucleares/virología
16.
J Control Release ; 330: 529-539, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33358977

RESUMEN

The current health crisis of corona virus disease 2019 (COVID-19) highlights the urgent need for vaccine systems that can generate potent and protective immune responses. Protein vaccines are safe, but conventional approaches for protein-based vaccines often fail to elicit potent and long-lasting immune responses. Nanoparticle vaccines designed to co-deliver protein antigens and adjuvants can promote their delivery to antigen-presenting cells and improve immunogenicity. However, it remains challenging to develop vaccine nanoparticles that can preserve and present conformational epitopes of protein antigens for induction of neutralizing antibody responses. Here, we have designed a new lipid-based nanoparticle vaccine platform (NVP) that presents viral proteins (HIV-1 and SARS-CoV-2 antigens) in a conformational manner for induction of antigen-specific antibody responses. We show that NVP was readily taken up by dendritic cells (DCs) and promoted DC maturation and antigen presentation. NVP loaded with BG505.SOSIP.664 (SOSIP) or SARS-CoV-2 receptor-binding domain (RBD) was readily recognized by neutralizing antibodies, indicating the conformational display of antigens on the surfaces of NVP. Rabbits immunized with SOSIP-NVP elicited strong neutralizing antibody responses against HIV-1. Furthermore, mice immunized with RBD-NVP induced robust and long-lasting antibody responses against RBD from SARS-CoV-2. These results suggest that NVP is a promising platform technology for vaccination against infectious pathogens.


Asunto(s)
Vacunas contra el SIDA/química , Vacunas contra la COVID-19/química , Inmunidad Humoral/efectos de los fármacos , Lípidos/química , Nanopartículas , Vacunas Virales/química , Vacunas contra el SIDA/administración & dosificación , Adyuvantes Inmunológicos , Animales , Presentación de Antígeno , Reacciones Antígeno-Anticuerpo , Vacunas contra la COVID-19/administración & dosificación , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , VIH-1 , Humanos , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos BALB C , Conejos , SARS-CoV-2 , Vacunas Virales/administración & dosificación
17.
ACS Med Chem Lett ; 11(6): 1348-1352, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32551023

RESUMEN

The mixed-lineage leukemia (MLL) protein, also known as MLL1, is a lysine methyltransferase specifically responsible for methylation of histone 3 lysine 4. MLL has been pursued as an attractive therapeutic target for the treatment of acute leukemia carrying the MLL fusion gene or MLL leukemia. Herein, we report the design, synthesis, and evaluation of an S-adenosylmethionine-based focused chemical library which led to the discovery of potent small-molecule inhibitors directly targeting the MLL SET domain. Determination of cocrystal structures for a number of these MLL inhibitors reveals that they adopt a unique binding mode that locks the MLL SET domain in an open, inactive conformation.

18.
Nat Chem ; 12(4): 405-411, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32123337

RESUMEN

Three-stranded coiled coils are peptide structures constructed from amphipathic heptad repeats. Here we show that it is possible to form pure heterotrimeric three-stranded coiled coils by combining three distinct characteristics: (1) a cysteine sulfur layer for metal coordination, (2) a thiophilic, trigonal pyramidal metalloid (Pb(II)) that binds to these sulfurs and (3) an adjacent layer of reduced steric bulk generating a cavity where water can hydrogen bond to the cysteine sulfur atoms. Cysteine substitution in an a site yields Pb(II)A2B heterotrimers, while d sites provide pure Pb(II)C2D or Pb(II)CD2 scaffolds. Altering the metal from Pb(II) to Hg(II) or shifting the relative position of the sterically less demanding layer removes heterotrimer specificity. Because only two of the eight or ten hydrophobic layers are perturbed, catalytic sites can be introduced at other regions of the scaffold. A Zn(II)(histidine)3(H2O) centre can be incorporated at a remote location without perturbing the heterotrimer selectivity, suggesting a unique strategy to prepare dissymmetric catalytic sites within self-assembling de novo-designed proteins.


Asunto(s)
Complejos de Coordinación/química , Cisteína/química , Plomo/química , Péptidos/química , Enlace de Hidrógeno , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Agua/química
19.
J Med Chem ; 63(5): 2489-2510, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31971799

RESUMEN

Anti-apoptotic Bcl-2 family proteins are overexpressed in a wide spectrum of cancers and have become well validated therapeutic targets. Cancer cells display survival dependence on individual or subsets of anti-apoptotic proteins that could be effectively targeted by multimodal inhibitors. We designed a 2,5-substituted benzoic acid scaffold that displayed equipotent binding to Mcl-1 and Bfl-1. Structure-based design was guided by several solved cocrystal structures with Mcl-1, leading to the development of compound 24, which binds both Mcl-1 and Bfl-1 with Ki values of 100 nM and shows appreciable selectivity over Bcl-2/Bcl-xL. The selective binding profile of 24 was translated to on-target cellular activity in model lymphoma cell lines. These studies lay a foundation for developing more advanced dual Mcl-1/Bfl-1 inhibitors that have potential to provide greater single agent efficacy and broader coverage to combat resistance in several types of cancer than selective Mcl-1 inhibitors alone.


Asunto(s)
Antineoplásicos/farmacología , Ácido Benzoico/farmacología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ácido Benzoico/química , Línea Celular Tumoral , Humanos , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Ratones , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor/metabolismo , Simulación del Acoplamiento Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
20.
Proc Natl Acad Sci U S A ; 116(48): 24303-24309, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31719195

RESUMEN

Infection of animal cells by numerous viruses is detected and countered by a variety of means, including recognition of nonself nucleic acids. The zinc finger antiviral protein (ZAP) depletes cytoplasmic RNA that is recognized as foreign in mammalian cells by virtue of its elevated CG dinucleotide content compared with endogenous mRNAs. Here, we determined a crystal structure of a protein-RNA complex containing the N-terminal, 4-zinc finger human (h) ZAP RNA-binding domain (RBD) and a CG dinucleotide-containing RNA target. The structure reveals in molecular detail how hZAP is able to bind selectively to CG-rich RNA. Specifically, the 4 zinc fingers create a basic patch on the hZAP RBD surface. The highly basic second zinc finger contains a pocket that selectively accommodates CG dinucleotide bases. Structure guided mutagenesis, cross-linking immunoprecipitation sequencing assays, and RNA affinity assays show that the structurally defined CG-binding pocket is not required for RNA binding per se in human cells. However, the pocket is a crucial determinant of high-affinity, specific binding to CG dinucleotide-containing RNA. Moreover, variations in RNA-binding specificity among a panel of CG-binding pocket mutants quantitatively predict their selective antiviral activity against a CG-enriched HIV-1 strain. Overall, the hZAP RBD RNA structure provides an atomic-level explanation for how ZAP selectively targets foreign, CG-rich RNA.


Asunto(s)
Secuencia Rica en GC , ARN Viral/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Polarización de Fluorescencia , Células HEK293 , VIH-1/genética , Humanos , Modelos Moleculares , Mutagénesis , Mutación , Dominios Proteicos , ARN Viral/química , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA