Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Anesthesiol ; 23(1): 41, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747148

RESUMEN

PURPOSE: Carbon dioxide (CO2) increases cerebral perfusion. The effect of CO2 on apnea tolerance, such as after anesthesia induction, is unknown. This study aimed to assess if cerebral apnea tolerance can be improved in obese patients under general anesthesia when comparing O2/Air (95%O2) to O2/CO2 (95%O2/5%CO2). METHODS: In this single-center, single-blinded, randomized crossover trial, 30 patients 18-65 years, with body mass index > 35 kg/m2, requiring general anesthesia for bariatric surgery, underwent two apneas that were preceded by ventilation with either O2/Air or O2/CO2 in random order. After anesthesia induction, intubation, and ventilation with O2/Air or O2/CO2 for 10 min, apnea was performed until the cerebral tissue oxygenation index (TOI) dropped by a relative 20% from baseline (primary endpoint) or oxygen saturation (SpO2) reached 80% (safety abortion criterion). The intervention was then repeated with the second substance. RESULTS: The safety criterion was reached in all patients before cerebral TOI decreased by 20%. The time until SpO2 dropped to 80% was similar in the two groups (+ 6 s with O2/CO2, 95%CI -7 to 19 s, p = 0.37). Cerebral TOI and PaO2 were higher after O2/CO2 (+ 1.5%; 95%CI: from 0.3 to 2.6; p = 0.02 and + 0.6 kPa; 95%CI: 0.1 to 1.1; p = 0.02). CONCLUSION: O2/CO2 improves cerebral TOI and PaO2 in anesthetized bariatric patients. Better apnea tolerance could not be confirmed.


Asunto(s)
Apnea , Dióxido de Carbono , Humanos , Estudios Cruzados , Oxígeno , Obesidad
2.
Aviat Space Environ Med ; 85(7): 700-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25022157

RESUMEN

INTRODUCTION: Visual performance impairment after hypoxia is well recognized in military and civilian aviation. The aims of this study were: 1) to assess oculometric features such as blink metrics, pupillary dynamics, fixations, and saccades as cognitive indicators of early signs of hypoxia; and 2) to analyze the impact of different hypoxic conditions ["hypoxic hypoxia" (HH) and "isocapnic hypoxia" (IH)] on specified oculometrics during mental workloads. METHODS: Oculometric data were collected on 25 subjects under 3 conditions: normoxia, HH (8% O2 + balance N2), and IH (7% O2 + 5% CO2 + balance N2). The mental workload task consisted of reading aloud linear arrays of numbers after exposure to gas mixtures. RESULTS: Blink rates were significantly increased under hypoxic conditions (by +100.7% in HH and by +92.8% in IH compared to normoxia). A faster recovery of blink rate was observed in transitioning from IH (23.6% vs. 76.3%) to normoxia. The percentage change in pupil size fluctuation was increased under HH more than under IH (29% vs. 4.4%). Under HH average fixation time and target area size were significantly higher than under IH. Total saccadic times under hypoxic conditions were significantly increased compared with normoxia. CONCLUSIONS: These results suggest that oculometric changes are indicators of hypoxia, which can be monitored using compact, portable, noninvasive eye-tracking devices in a cockpit analogous environment to detect hypoxia-induced physiological changes in aircrew. Comparative results between HH and IH support the potential role of carbon dioxide in augmenting cerebral perfusion and hence improved tissue oxygen delivery.


Asunto(s)
Parpadeo/fisiología , Fijación Ocular/fisiología , Hipoxia/fisiopatología , Pupila/fisiología , Movimientos Sacádicos/fisiología , Adulto , Análisis de Varianza , Cognición/fisiología , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Proyectos Piloto
3.
Aviat Space Environ Med ; 84(10): 1017-22, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24261052

RESUMEN

INTRODUCTION: Hypoxic incapacitation continues to be a significant threat to safety and operations at high altitude. Noninvasive neurocognitive performance testing is desirable to identify presymptomatic cognitive impairment, affording operators at altitude a tool to quantify their performance and safety. METHODS: There were 25 subjects enrolled in this study. Cognitive performance was assessed by using the King-Devick (K-D) test. The performance of the subjects on the K-D test was measured in normoxia followed by hypoxia (8% 02 equivalent to 7101 m) and then again in normoxia. RESULTS: K-D test completion time in hypoxia for 3 min was significantly longer than the Baseline Test (54.5 +/- 12.4 s hypoxic vs. 46.3 +/- 10.4 s baseline). Upon returning to normoxia the completion time was significantly shorter than in hypoxia (47.6 +/- 10.6 s post test vs. 54.5 +/- 12.4 s hypoxic). There was no statistically significant difference between baseline test and post test times, indicating that all subjects returned to their normoxic baseline levels. SpO2 decreased from 98 +/- 0.9% to 80 +/- 7.8% after 3 min on hypoxic gas. During the hypoxic K-D test, SpO2 decreased further to 75.8 +/- 8.3%. CONCLUSIONS: In this study the K-D test has been shown to be an effective neurocognitive test to detect hypoxic impairment at early presymptomatic stages. The K-D test may also be used to afford a reassessment of traditional measures used to determine hypoxic reserve time.


Asunto(s)
Trastornos del Conocimiento/etiología , Hipoxia Encefálica/complicaciones , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA