Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611962

RESUMEN

Phytocompounds have been evaluated for their anti-glioblastoma actions for decades, with promising results from preclinical studies but only limited translation into clinics. Indeed, by targeting multiple signaling pathways deregulated in cancer, they often show high efficacy in the in vitro studies, but their poor bioavailability, low tumor accumulation, and rapid clearance compromise their efficacy in vivo. Here, we present the new avenues in phytocompound research for the improvement of glioblastoma therapy, including the ways to enhance the response to temozolomide using phytochemicals, the current focus on phytocompound-based immunotherapy, or the use of phytocompounds as photosensitizers in photodynamic therapy. Moreover, we present new, intensively evaluated approaches, such as chemical modifications of phytochemicals or encapsulation into numerous types of nanoformulations, to improve their bioavailability and delivery to the brain. Finally, we present the clinical trials evaluating the role of phytocompounds or phytocompound-derived drugs in glioblastoma therapy and the less studied phytocompounds or plant extracts that have only recently been found to possess promising anti-glioblastoma properties. Overall, recent advancements in phytocompound research are encouraging; however, only with more 3D glioblastoma models, in vivo studies, and clinical trials it is possible to upgrade the role of phytocompounds in glioblastoma treatment to a satisfactory level.


Asunto(s)
Glioblastoma , Fotoquimioterapia , Humanos , Glioblastoma/tratamiento farmacológico , Encéfalo , Temozolomida , Inmunoterapia
2.
Antioxidants (Basel) ; 13(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38247529

RESUMEN

Photoaging is a process related to an increased level of reactive oxygen species (ROS). Polyphenols can scavenge free radicals in the body, which can delay skin aging. Therefore, our work aimed to prepare a biologically active extract from dry fruits of Vaccinium myrtillus or Vaccinium corymbosum and use it for the preparation of hydrogels for topical application. Therefore, eight different extracts (using V. myrtillus and V. corymbosum and different extraction mixtures: methanol, methanol-water 1:1, water, acetone-water 1:1) were prepared and their phytochemical (total polyphenolic content, total flavonoid content, total anthocyanin content) and biological properties (antioxidant, anti-hyaluronidase, and anti-tyrosinase activity) were assessed. Cytotoxicity towards HaCaT keratinocytes was also determined. Based on the results, the acetone-water extract from V. myrtillus was selected for further study. Using the Design of Experiments approach, chitosan-based hydrogels with bilberry fruit extract were prepared. The content of extract and chitosan were selected as independent factors. The activity of hydrogels depended on the extract content; however, the enzyme-inhibiting (anti-hyaluronidase and anti-tyrosinase) activity resulted from the presence of both the extract and chitosan. Increased concentration of chitosan in the hydrogel base led to increased viscosity of the hydrogel and, consequently, a slower release of active compounds. To get optimal hydrogel characteristics, 1% extract and 2.5% MMW chitosan were utilized. The research suggests the validity of using bilberry fruit extracts in topical preparations with anti-aging properties.

3.
Molecules ; 28(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37446627

RESUMEN

Plants are commonly used in folk medicine. Research indicates that the mechanisms of biological activity of plant extracts may be essential in the treatment of various diseases. In this respect, we decided to test the ethanolic extracts of Bidens tripartita herb (BTH), Galium verum herb (GVH), and Rumicis hydrolapathum root (RHR) on angiogenic, anti-inflammatory, and antioxidant properties and their total polyphenols content. In vitro studies using endothelial cells were used to see tested extracts' angiogenic/angiostatic and anti-inflammatory properties. The DPPH assay and FRAP analysis were used to detect antioxidant properties of extracts. The Folin-Ciocalteu analysis was used to determine the content of total polyphenols. The results of gas chromatography-mass spectrometry analysis was also presented. In vitro study demonstrated that BTH, GVH, and RHR ethanolic extracts significantly increased cell invasiveness, compared with the control group. Increased endothelial proangiogenic invasiveness was accompanied by reduced metalloproteinase inhibitor 1 (TIMP-1) and raised in metalloproteinase 9 (MMP-9). Only BTH and GVH significantly reduced cell proliferation, while BTH and RHR facilitated migration. Additionally, tested extracts reduced the production of proangiogenic platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF). The most potent anti-inflammatory capacity showed BTH and GVH, reducing proinflammatory interleukin 8 (CXCL8) and interleukin 6 (Il-6), compared to RHR extract that has slightly less inhibited CXCL8 production without affecting IL-6 production. Moreover, we confirmed the antioxidant properties of all examined extracts. The highest activity was characterized by RHR, which has been correlated with the high content of polyphenols. In conclusion, the modifying influence of examined extracts can be promising in disorders with pathogenesis related to angiogenesis, inflammation and free radicals formation. BTH is the best choice among the three tested extracts with its antiangiogenic and anti-inflammatory properties.


Asunto(s)
Galium , Rumex , Antioxidantes/farmacología , Antioxidantes/química , Galium/química , Células Endoteliales , Interleucina-6 , Polifenoles/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Etanol
4.
Molecules ; 29(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38202796

RESUMEN

Xylobolus subpileatus is a widely distributed crust fungus reported from all continents except Antarctica, although considered a rare species in several European countries. Profound mycochemical analysis of the methanol extract of X. subpileatus resulted in the isolation of seven compounds (1-7). Among them, (3ß,22E)-3-methoxy-ergosta-4,6,814,22-tetraene (1) is a new natural product, while the NMR assignment of its already known epimer (2) has been revised. In addition to a benzohydrofuran derivative fomannoxin (3), four ergostane-type triterpenes 4-7 were identified. The structure elucidation of the isolated metabolites was performed by one- and two-dimensional NMR and MS analysis. Compounds 2-7 as well as the chloroform, n-hexane, and methanol extracts of X. subpileatus were evaluated for their tyrosinase, acetylcholinesterase, and butyrylcholinesterase inhibitory properties. Among the examined compounds, only fomannoxin (3) displayed the antityrosinase property with 51% of inhibition, and the fungal steroids proved to be inactive. Regarding the potential acetylcholinesterase (AChE) inhibitory activity of the fungal extracts and metabolites, it was demonstrated that the chloroform extract and compounds 3-4 exerted noteworthy inhibitory activity, with 83.86 and 32.99%, respectively. The butyrylcholinesterase (BChE) inhibitory assay revealed that methanol and chloroform extracts, as well as compounds 3 and 4, exerted notable activity, while the rest of the compounds proved to be only weak enzyme inhibitors. Our study represents the first report on the chemical profile of basidiome of the wild-growing X. subpileatus, offering a thorough study on the isolation and structure determination of the most characteristic biologically active constituents of this species.


Asunto(s)
Basidiomycota , Inhibidores de la Colinesterasa , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa , Butirilcolinesterasa , Cloroformo , Metanol , Extractos Vegetales
5.
Molecules ; 29(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38202817

RESUMEN

Evernia prunastri is a lichen widely distributed in the Northern Hemisphere. Its biological properties still need to be discovered. Therefore, our paper focuses on studies of E. prunastri extracts, including its main metabolites evernic acid (EA) or atranorin (ATR). Phytochemical profiles using chromatographic analysis were confirmed. The antioxidant activity was evaluated using in vitro chemical tests and in vitro enzymatic cells-free tests, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). The anti-inflammatory potential using cyclooxygenase-2 (COX-2) and hyaluronidase were determined. The neuroprotective potential using acetylcholinesterase, (AChE), butyrylcholinesterase (BChE), and tyrosinase (Tyr) was estimated. The hypoglycemic activity was also confirmed (α-glucosidase). Principal component analysis was performed to determine the relationship between the biological activity of extracts. The inhibitory effect of EA and ATR on COX-2 AChE, BChE, Tyr, and α-glucosidase was evaluated using molecular docking techniques and confirmed for EA and ATR (besides α-glucosidase). The penetration of EA and ATR from extracts through the blood-brain barrier was confirmed using the parallel artificial membrane permeability assay blood-brain barrier test. In conclusion, depending on chemical surroundings and the concentration, the E. prunastri extracts, EA or ATR, showed attractive pleiotropic properties, which should be further investigated.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Hidroxibenzoatos , Parmeliaceae , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , alfa-Glucosidasas , Monofenol Monooxigenasa
6.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36290793

RESUMEN

Lichens are a source of various biologically active compounds. However, the knowledge about them is still scarce, and their use in medicine is limited. This study aimed to investigate the therapeutic potential of the lichen Platismatia glauca and its major metabolite caperatic acid in regard to their potential application in the treatment of central nervous system diseases, especially neurodegenerative diseases and brain tumours, such as glioblastoma. First, we performed the phytochemical analysis of the tested P. glauca extracts based on FT-IR derivative spectroscopic and gas chromatographic results. Next the antioxidant properties were determined, and moderate anti-radical activity, strong chelating properties of Cu2+ and Fe2+ ions, and a mild effect on the antioxidant enzymes of the tested extracts and caperatic acid were proved. Subsequently, the influence of the tested extracts and caperatic acid on cholinergic transmission was determined by in vitro and in silico studies confirming that inhibitory effect on butyrylcholinesterase is stronger than against acetylcholinesterase. We also confirmed the anti-inflammatory properties of P. glauca extracts and caperatic acid using a COX-2 and hyaluronidase inhibition models. Moreover, our studies show the cytotoxic and pro-apoptotic activity of the P. glauca extracts against T98G and U-138 MG glioblastoma multiforme cell lines. In conclusion, it is possible to assume that P. glauca extracts and especially caperatic acid can be regarded as the source of the valuable substances to finding new therapies of central nervous system diseases.

7.
Cells ; 11(7)2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35406647

RESUMEN

Lichens are a source of secondary metabolites with significant pharmacological potential. Data regarding their possible application in glioblastoma (GBM) treatment are, however, scarce. The study aimed at analyzing the mechanism of action of six lichen secondary metabolites: atranorin, caperatic acid, physodic acid, squamatic acid, salazinic acid, and lecanoric acid using two- and three-dimensional GBM cell line models. The parallel artificial membrane permeation assay was used to predict the blood-brain barrier penetration ability of the tested compounds. Their cytotoxicity was analyzed using the MTT test on A-172, T98G, and U-138 MG cells. Flow cytometry was applied to the analysis of oxidative stress, cell cycle distribution, and apoptosis, whereas qPCR and microarrays detected the induced transcriptomic changes. Our data confirm the ability of lichen secondary metabolites to cross the blood-brain barrier and exert cytotoxicity against GBM cells. Moreover, the compounds generated oxidative stress, interfered with the cell cycle, and induced apoptosis in T98G cells. They also inhibited the Wnt/ß-catenin pathway, and this effect was even stronger in case of a co-treatment with temozolomide. Transcriptomic changes in cancer related genes induced by caperatic acid and temozolomide were the most pronounced. Lichen secondary metabolites, caperatic acid in particular, should be further analyzed as potential anti-GBM agents.


Asunto(s)
Glioblastoma , Líquenes , Temozolomida , Vía de Señalización Wnt , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Líquenes/química , Temozolomida/farmacología , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
8.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34959693

RESUMEN

Lichens are a source of chemical compounds with valuable biological properties, structurally predisposed to penetration into the central nervous system (CNS). Hence, our research aimed to examine the biological potential of lipophilic extracts of Parmelia sulcata, Evernia prunastri, Cladonia uncialis, and their major secondary metabolites, in the context of searching for new therapies for CNS diseases, mainly glioblastoma multiforme (GBM). The extracts selected for the study were standardized for their content of salazinic acid, evernic acid, and (-)-usnic acid, respectively. The extracts and lichen metabolites were evaluated in terms of their anti-tumor activity, i.e., cytotoxicity against A-172 and T98G cell lines and anti-IDO1, IDO2, TDO activity, their anti-inflammatory properties exerted by anti-COX-2 and anti-hyaluronidase activity, antioxidant activity, and anti-acetylcholinesterase and anti-butyrylcholinesterase activity. The results of this study indicate that lichen-derived compounds and extracts exert significant cytotoxicity against GBM cells, inhibit the kynurenine pathway enzymes, and have anti-inflammatory properties and weak antioxidant and anti-cholinesterase properties. Moreover, evernic acid and (-)-usnic acid were shown to be able to cross the blood-brain barrier. These results demonstrate that lichen-derived extracts and compounds, especially (-)-usnic acid, can be regarded as prototypes of pharmacologically active compounds within the CNS, especially suitable for the treatment of GBM.

9.
Nutrients ; 13(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34836310

RESUMEN

Herbal infusions are an underestimated and easy to intake a source of biologically active natural compounds (polyphenols), which, in the dissolved form, are more easily absorbed. Therefore, this study aimed to assess the potential of herbal infusions as a functional food to reduce postprandial hyperglycemia (inhibition of α-amylase and α-glucosidase) and to reduce the effects of increased blood glucose level (antioxidant effect-DPPH, CUPRAC, and Fe2+ chelating assays, as well as anti-inflammatory activity-inhibition of collagenase). We showed that polyphenols are present in the examined aqueous herbal infusions (including chlorogenic and gallic acids). Subsequently, our research has shown that herbal infusions containing cinnamon bark, mulberry leaves, and blackberry fruits most strongly inhibit glucose release from complex carbohydrates, and that all herbal infusions can, to different degrees, reduce the effects of elevated blood sugar. In conclusion, infusions prepared from herbal blends could be recommended to prevent type II diabetes.


Asunto(s)
Alimentos Funcionales , Extractos Vegetales/farmacología , Plantas/química , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Glucemia/efectos de los fármacos , Quelantes/farmacología , Cinnamomum zeylanicum , Colagenasas/efectos de los fármacos , Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Frutas/química , Glucosa , Inhibidores de Glicósido Hidrolasas/farmacología , Hidroxibenzoatos , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Morus , Hojas de la Planta , Polifenoles/farmacología , Rubus , alfa-Amilasas , alfa-Glucosidasas
10.
Molecules ; 26(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34500657

RESUMEN

The study aimed to examine whether usnic acid-a lichen compound with UV-absorbing properties-can be considered as a prospective photoprotective agent in cosmetic products. Moreover, a comparison of two usnic acid enantiomers was performed to preselect the more effective compound. To meet this aim, an in vitro model was created, comprising the determination of skin-penetrating properties via skin-PAMPA assay, safety assessment to normal human skin cells (keratinocytes, melanocytes, fibroblasts), and examination of photostability and photoprotective properties. Both enantiomers revealed comparable good skin-penetrating properties. Left-handed usnic acid was slightly more toxic to keratinocytes (IC50 80.82 and 40.12 µg/mL, after 48 and 72 h, respectively) than its right-handed counterpart. The latter enantiomer, in a cosmetic formulation, was characterized by good photoprotective properties and photostability, comparable to the UV filter octocrylene. Perhaps most interestingly, (+)-usnic acid combined with octocrylene in one formulation revealed enhanced photoprotection and photostability. Thus, the strategy can be considered for the potential use of (+)-usnic acid as a UV filter in cosmetic products. Moreover, the proposed model may be useful for the evaluation of candidates for UV filters.


Asunto(s)
Benzofuranos/química , Benzofuranos/farmacología , Acrilatos/química , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Melanocitos/efectos de los fármacos , Melanocitos/efectos de la radiación , Protectores contra Radiación/química , Protectores contra Radiación/farmacología , Piel/efectos de los fármacos , Rayos Ultravioleta
11.
Molecules ; 26(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34577004

RESUMEN

The present work was aimed at studying the potential of elicitation on the accumulation of phenolic compounds in in vitro shoot cultures of Eryngium alpinum L., a protected plant from the Apiaceae family. The study examined the influence of (+)-usnic acid on the biomass growth as well as on the biosynthesis of the desired flavonoids and phenolic acids in the cultured microshoots. The phenolic compound content was determined by HPLC-DAD. The flavonoid of the highest concentration was isoquercetin, and the phenolic acids of the highest amount were rosmarinic acid, caffeic acid and 3,4-dihydroxyphenylacetic acid, both in the non-elicited and elicited biomass. Isoquercetin accumulation was efficiently increased by a longer elicitation with a lower concentration of lichenic compound (107.17 ± 4.67 mg/100 g DW) or a shorter elicitation with a higher concentration of acid (127.54 ± 11.34 and 108.37 ± 12.1 mg/100 g DW). Rosmarinic acid production generally remained high in all elicited and non-elicited microshoots. The highest content of this acid was recorded at 24 h of elicitation with 3.125 µM usnic acid (512.69 ± 4.89 mg/100 g DW). The process of elicitation with (+)-usnic acid, a well-known lichenic compound with allelopathic nature, may therefore be an effective technique of enhancing phenolic compound accumulation in alpine eryngo microshoot biomass.


Asunto(s)
Benzofuranos/farmacología , Eryngium/química , Flavonoides/metabolismo , Hidroxibenzoatos/metabolismo , Brotes de la Planta/química , Ácido 3,4-Dihidroxifenilacético/análisis , Ácido 3,4-Dihidroxifenilacético/metabolismo , Biomasa , Ácidos Cafeicos/análisis , Ácidos Cafeicos/metabolismo , Cromatografía Líquida de Alta Presión , Cinamatos/análisis , Cinamatos/metabolismo , Depsidos/análisis , Depsidos/metabolismo , Eryngium/efectos de los fármacos , Eryngium/crecimiento & desarrollo , Eryngium/metabolismo , Flavonoides/análisis , Hidroxibenzoatos/análisis , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Quercetina/análogos & derivados , Quercetina/análisis , Quercetina/metabolismo , Ácido Rosmarínico
12.
Molecules ; 26(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34443375

RESUMEN

The study aimed to evaluate the possible modulation of Nrf2, NF-ĸB and STAT3 signaling pathways in the colorectal cancer (CRC) cells line DLD-1 and HCT116 by secondary metabolites of lichens. An attempt was made to indicate the most promising targets in these signaling pathways. Attention was also paid to the effects of the compounds tested on CRC cells using anakoinosis-that is, simultaneous analysis of several signaling pathways. The effects of the tested natural compounds on the activity of selected transcriptional factors related to CRC were analyzed by Western blot and RT-PCR assays. The highest activity against CRC cells was shown by physodic and salazinic acids from the studied secondary metabolites of lichens. As a result, an increase in the activation of transcription factor Nrf2 and the expression of its selected target genes was observed. Physodic and salazinic acids induced the opposite effect in relation to the NF-κB and STAT3 pathways. These results confirmed our earlier observations that lichen-derived compounds have the ability to modulate signaling pathway networks. While caperatic acid affected Wnt/ß-catenin to the most extent, salazinic acid was the most potent modulator of Nrf2, NF-κB and STAT3 pathways. Physodic acid seemed to affect all the investigated pathways.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Depsidos/farmacología , Lactonas/farmacología , Líquenes/química , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Depsidos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lactonas/química , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Metabolismo Secundario/efectos de los fármacos
13.
Cancers (Basel) ; 13(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916370

RESUMEN

Lichen secondary metabolites are characterized by huge pharmacological potential. Our research focused on assessing the anticancer and neuroprotective activity of Hypogymnia physodes acetone extract (HP extract) and physodic acid, its major component. The antitumor properties were evaluated by cytotoxicity analysis using A-172, T98G, and U-138 MG glioblastoma cell lines and by hyaluronidase and cyclooxygenase-2 (COX-2) inhibition. The neuroprotective potential was examined using COX-2, tyrosinase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) activity tests. Moreover, the antioxidant potential of the tested substances was examined, and the chemical composition of the extract was analyzed. For physodic acid, the permeability through the blood-brain barrier using Parallel Artificial Membrane Permeability Assay for the Blood-Brain Barrier assay (PAMPA-BBB) was assessed. Our study shows that the tested substances strongly inhibited glioblastoma cell proliferation and hyaluronidase activity. Besides, HP extract diminished COX-2 and tyrosinase activity. However, the AChE and BChE inhibitory activity of HP extract and physodic acid were mild. The examined substances exhibited strong antioxidant activity. Importantly, we proved that physodic acid crosses the blood-brain barrier. We conclude that physodic acid and H. physodes should be regarded as promising agents with anticancer, chemopreventive, and neuroprotective activities, especially regarding the central nervous system diseases.

14.
J Ethnopharmacol ; 268: 113656, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33276059

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Usnea sp. is a fruticose thalli lichen with interesting medicinal properties. Since ancient times, Usnea sp. has been used in traditional medicine worldwide to treat various diseases. The broad scientific studies on this lichen have proved its multidirectional biological effect, such as antimicrobial activity, which is attributed to its usnic acid content. PURPOSE: The main aim of this review is to provide an up-to-date overview of the antimicrobial activities of Usnea sp., including the traditional and medicinal uses, and a critical evaluation of the presented data. Also, the mechanism of this type of action will be explained. METHODS: To prepare this manuscript, the information was extracted from scientific databases (Pubmed, ScienceDirect, Wiley, Springer, and Google Scholar), books, and theses. The available scientific information was critically analysed. RESULTS: Analysis of the scientific literature regarding traditional uses and bioactivity research showed that Usnea sp. extracts exhibit high antibacterial activity. The Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, and Mycobacterium tuberculosis) and aquatic oomycetous fungi were the most sensitive Usnea sp. extracts. Moderate activity against Malassezia furfur and dermatophytes was observed, as well. Gram-negative bacteria, yeast, and fungi were more frequently resistant to Usnea sp. extracts (included Escherichia coli, Candida sp., Saccharomyces cerevisiae, and Aspergillus sp.). The antiviral activity of Usnea sp. was limited. CONCLUSION: The results show that the use of Usnea sp. in traditional medicine can be scientifically documented. Studies show that usnic acid is the active compound present in Usnea sp. extracts. This compound, which has a high antibacterial and cytotoxic activity, exists in large quantities in low-polarity extracts, and low concentration in these of high-polarity. Usnea sp. extracts contain compounds other than usnic acid as well with biological effects. Usnea barbata is a species that has been employed in modern-day cosmetic and pharmaceutical preparations. The information presented in the review can be considered as a source of knowledge about the Usnea sp. It presents research on biological properties reported for different species of Usnea genus and thus can facilitate their use in medicine.


Asunto(s)
Antibacterianos/farmacología , Etnofarmacología/métodos , Medicina Tradicional/métodos , Extractos Vegetales/farmacología , Usnea , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/uso terapéutico , Enfermedades Transmisibles/tratamiento farmacológico , Enfermedades Transmisibles/patología , Humanos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico
15.
Adv Med Sci ; 66(1): 6-20, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33238230

RESUMEN

PURPOSE: Glioblastoma is the most common and the deadliest brain cancer. The aim of this study was to analyze the impact of resveratrol and its five analogs: 3,4,4'-trimethoxy, 3,4,2'-trimethoxy, 3,4,2',4'-tetramethoxy, 3,4,2',6'-tetramethoxy and 3,4,2',4',6'-pentamethoxy-trans-stilbenes (MS) on human glioblastoma T98G cells. MATERIALS AND METHODS: The Parallel Artificial Membrane Permeation Assay (PAMPA) was used for the prediction of blood-brain barrier penetration ability of the tested stilbenes (PAMPA-BBB). MTT test was applied to analyze the cytotoxicity of the compounds, whereas their ability to inhibit Wnt/ß-catenin target genes expression was verified using qPCR. The potential DNA demethylating properties of the analyzed compounds were tested by Methylation-Sensitive High Resolution Melting (MS-HRM). Cell cycle distribution was tested using Fluorescence-Activated Cell Sorting (FACS), whereas apoptosis was analyzed using FITC Annexin V/propidium iodide double staining assay and Western blot. RESULTS: High blood-brain barrier permeability coefficient was obtained for both resveratrol as well as methoxy-stilbenes. Their ability to downregulate the expression of Wnt/ß-catenin pathway-related genes was confirmed. The 4'-methoxy substituted derivatives showed higher activity, whereas 3,4,4'-tri-MS was the most potent Wnt/ß-catenin pathway inhibitor. None of the compounds affected DNA methylation level of MGMT, SFRP1, or RUNX3, despite inducing moderate changes in the level of expression of epigenetic modifiers DNMT3B and TET1-3. Importantly, treatment with 3,4,4'-tri-MS and 3,4,2',4'-tetra-MS led to cycle arrest in the S phase and induced apoptosis. CONCLUSIONS: Both, resveratrol, as well as its synthetic methoxy-derivatives, should be further studied as promising adjuvants in glioblastoma treatment.


Asunto(s)
Apoptosis , Puntos de Control del Ciclo Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Estilbenos/farmacología , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Antioxidantes/farmacología , Proliferación Celular , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Resveratrol/farmacología , Estilbenos/química , Células Tumorales Cultivadas , Proteína Wnt1/genética , beta Catenina/genética
16.
Acta Biochim Pol ; 66(4): 597-603, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31837656

RESUMEN

Cladonia uncialis is a lichen species with confirmed antibacterial activity and whose genome has been recently sequenced, enabling first attempts in its functional characterization. In this work, we investigated activity of the C. uncialis acetone extract (CUE) and usnic acid (UA) enantiomers against ten clinical microbial strains causing skin infections. The results showed that CUE, containing (-)-UA and squamatic acid, assayed at the same concentrations as UA, was noticeably more active than (-)-UA alone, in its pure form. The studied CUE displayed an activity that was comparable to that of (+)-UA observed for Staphylococcus epidermidis and Enterococcus faecium (18-24 mm zone of growth inhibition), but did not display any activity against fungal strains. The CUE demonstrated low cytotoxicity against HaCaT cells, in comparison to UA enantiomers, which is important for its therapeutic use. Results of the antioxidant assay (DPPH) indicated low antioxidant activity (IC50>200 µg/mL) of CUE, while the total phenolic content was 70.36 mg Gallic Acid Equivalent/g of the dry extract.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Líquenes/química , Enfermedades Cutáneas Infecciosas/tratamiento farmacológico , Antibacterianos/química , Antioxidantes/química , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Hongos/efectos de los fármacos , Hongos/patogenicidad , Humanos , Líquenes/metabolismo , Fenoles/química , Fenoles/farmacología , Enfermedades Cutáneas Infecciosas/microbiología
17.
Molecules ; 24(7)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987219

RESUMEN

A protocol for C. japonica micropropagation with a confirmation of genome size stability of the in vitro-propagated plantlets was developed. The highest number of shoots multiplied in vitro was obtained on Murashige & Skoog medium (MS) with 1.0 mg L-1 N6-benzyladenine plus 1.0 mg L-1 indole-3-acetic acid. The highest number of roots was observed for the shoots on MS with 15 g L-1 sucrose plus 1.0 mg L-1 indole-3-acetic acid. The acclimatization rate was significantly high. The qualitative HPLC analyses confirmed the presence of phenolic acids and flavonoids in the extracts. The extracts from both shoot cultures and the leaves from field-grown plants revealed antioxidant activity and they exhibited moderate antimicrobial activity. The conducted research confirmed the regeneration potential of genetically-stable plants of C. japonica under in vitro conditions, the ability of the plantlets to produce polyphenols as those present in field-grown plants, as well as their antioxidant potential.


Asunto(s)
Antiinfecciosos/química , Antioxidantes/química , Extractos Vegetales/química , Polifenoles/química , Rosaceae/química , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Fenotipo , Fitoquímicos/química , Fitoquímicos/farmacología , Brotes de la Planta/química , Polifenoles/farmacología , Rosaceae/crecimiento & desarrollo
18.
Molecules ; 23(11)2018 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-30453634

RESUMEN

The effect of the well-characterized callus extract of Chaenomeles japonica on viability, morphology, and proliferation of normal human skin fibroblasts was investigated. The phytochemical analysis was performed using the ultra-high performance liquid chromatography method. The total phenolic, phenolic acid, and flavonoid contents were determined spectrophotometrically. The antioxidant activity was investigated using the DPPH (1,1-Diphenyl-1-picrylhydrazyl Radical Scavenging), FRAP (Ferric Reducing Antioxidant Power), and CUPRAC (CUPric Reducing Antioxidant Capacity) assays. The callus growth index during passages was high as well as the content of pentacyclic triterpenoids. The microscopic observations of the fibroblast viability, morphology and the evaluation of the proliferation ratio (xCELLigence system) proved that the influence of callus extract on the fibroblasts was dose-dependent. The evaluated level of fibroblasts proliferation rate after 72 h of incubation with callus extract at concentration 12.5 µg L-1 was the highest compared to all the analyzed ligands. Moreover, callus extract administrated for 72 h caused a significant increase in the proliferation rate in comparison with the control group (5.7 ± 0.1 vs. 4.4 ± 0.9; p < 0.01). The preliminary studies carried out may suggest that the callus extract rich in triterpenoids may be a potential source of cosmetic ingredients with a beneficial effect on human skin.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Rosaceae/química , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Humanos , Fitoquímicos/análisis , Polifenoles/química , Espectrometría de Masas en Tándem
19.
Molecules ; 23(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149540

RESUMEN

The objective of this study was to evaluate the usefulness of a hydroalcoholic extract from Galinsoga parviflora herb (GP) in some aspects of the endothelial cell function necessary for anti-inflammatory activity and wound healing and relate these to the GP phytochemical profile. This study demonstrated that the GP extract caused a dose-dependent reduction of IL-6 secretion on IL-1ß-stimulated endothelial cells. The IL-6 release was decreased to 33% ± 9% while this did not influence the IL-6 secretion without stimulation. Additionally, the GP extract exhibited an anti-hyaluronidase activity (IC50 = 0.47 mg/mL), which was evidently stronger than the positive control kaempferol (IC50 = 0.78 mg/mL) as well as a moderate and concentration-dependent, antioxidant activity. The results of the scratch assay showed that exposure of the endothelial cells to GP induced complete healing of the damage after 12 h of the study. The phytochemical profile of the extract was studied by using spectrophotometric (total amount of polyphenols and flavonoids) and UPLC (phenolic acids) methods. The main compound in the GP extract was a chlorogenic acid (2.00 ± 0.01 mg/g by UPLC). The total content of polyphenols was 98.30 ± 0.14 mg of chlorogenic acid equivalent/g of the dry herb and content of flavonoids amounted to 6.15 ± 0.41 mg quercetin equivalent/g of the dry herb. Moreover, the presence of flavonoids in G. parviflora was provided after their isolation and identification by spectroscopic methods. In conclusion, it demonstrated that application of GP in the treatment of skin lesions gives possibility of wound healing based on antioxidant, anti-inflammatory, and hyaluronidase-inhibiting activities of G. parviflora herb extract.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Asteraceae/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Antioxidantes/química , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Flavonoides/química , Polifenoles/química , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas
20.
Mol Cell Biochem ; 441(1-2): 109-124, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28887754

RESUMEN

Lichens are a source of secondary metabolites which possess important biological activities, including antioxidant, antibacterial, anti-inflammatory, and cytotoxic effects. The anticancer activity of lichens was shown in many types of tumors, including colorectal cancers (CRC). Several studies revealed that the application of lichen extracts diminished the proliferation of CRC cells and induced apoptosis. Colon carcinogenesis is associated with aberrations in Wnt signaling. Elevated transcriptional activity of ß-catenin induces cell survival, proliferation, and migration. Thus, the inhibition of Wnt signaling is a promising therapeutic strategy in colorectal cancer. The aim of this study was the evaluation of the effects of lichen-derived depsides (atranorin, lecanoric acid, squamatic acid) and depsidones (physodic acid, salazinic acid) and a poly-carboxylic fatty acid-caperatic acid, on Wnt signaling in HCT116 and DLD-1 colorectal cancer cell lines. HCT116 cells were more sensitive to the modulatory effects of the compounds. PKF118-310, which was used as a reference ß-catenin inhibitor, dose-dependently reduced the expression of the classical ß-catenin target gene-Axin2 in both cell lines. Lecanoric acid slightly reduced Axin2 expression in HCT116 cells while caperatic acid tended to reduce Axin2 expression in both cell lines. Physodic acid much more potently decreased Axin2 expression in HCT116 cells than in DLD-1 cells. Physodic acid and caperatic acid also diminished the expression of survivin and MMP7 in a cell line and time-dependent manner. None of the compounds affected the nuclear translocation of ß-catenin. This is the first report showing the ability of caperatic acid and physodic acid to modulate ß-catenin-dependent transcription.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Dibenzoxepinas/farmacología , Líquenes/química , Ácidos Tricarboxílicos/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Proteína Axina/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Dibenzoxepinas/química , Humanos , Proteínas de Neoplasias/metabolismo , Ácidos Tricarboxílicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA