Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS EST Air ; 1(6): 464-473, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38898934

RESUMEN

Traditional online measurements of the chemical composition of particulate matter have relied on expensive and complex research-grade instrumentation based on mass spectrometry and/or chromatography. However, routine monitoring requires lower-cost alternatives that can be operated autonomously, and such tools are lacking. Routine monitoring of particulate matter, especially organic aerosol, relies instead on offline techniques such as filter collection that require significant operator effort. To address this gap, we present here a new online instrument, the "ChemSpot", that provides information on organic aerosol mass loading, volatility, and degree of oxygenation, along with sulfur content. The instrument grows particles with water condensation, impacts them onto a passivated surface with low heat capacity, and uses stepped thermal desorption of analytes to a combination of flame ionization detector (FID) and flame photometric detector (FPD) and then to a CO2 detector downstream of the FID/FPD setup. By relying on detectors designed for gas chromatography, calibration is achieved almost entirely through the introduction of gases without the need for regular introduction of particle-phase calibrants. Particle collection efficiency of greater than 95% was achieved consistently, and the collection cell was shown to rapidly and precisely heat to ∼800 °C at a rate as fast as 10 °C per second. Measurements of total organic carbon, volatility distribution of organic aerosol, total sulfur, and oxygen-to-carbon ratio (O:C) collected during a continuous multi-week period are presented here to demonstrate the autonomous operation of "ChemSpot". Colocated measurements with a mass spectrometer, an aerosol chemical speciation monitor (ACSM), show good correlation and relatively low bias between the instruments (mean absolute percentage error of 21% and 27% for organic carbon and equivalent sulfate measurements, respectively).

2.
Aerosol Sci Technol ; 57(4): 342-354, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37284690

RESUMEN

We describe design and characterization of an aerosol NanoSpot™ collector, designed for collection of airborne particles on a microscopy substrate for direct electron and optical microscopy, and laser spectroscopy analysis. The collector implements a water-based, laminar-flow, condensation growth technique, followed by impaction onto an optical/electron microscopy substrate or a transmission electron microscopy grid for direct analysis. The compact design employs three parallel growth tubes allowing a sampling flow rate of 1.2 L min-1. Each growth tube consists of three-temperature regions, for controlling the vapor saturation profile and exit dew point. Following the droplet growth, the three streams merge into one flow and a converging nozzle enhances focusing of grown droplets into a tight beam, prior to their final impaction on the warm surface of the collection substrate. Experiments were conducted for the acquisition of the size-dependent collection efficiency and the aerosol concentration effect on the NanoSpot™ collector. Particles as small as 7 nm were activated and collected on the electron microscopy stub. The collected particle samples were analyzed using electron microscopy and Raman spectroscopy for the acquisition of the particle spatial distribution, the spot sample uniformity, and the analyte concentration. A spot deposit of approximately 0.7-mm diameter is formed for particles over a broad particle diameter range, for effective coupling with microscopic and spectroscopic analysis. Finally, the NanoSpot™ collector's analytical measurement sensitivity for laser Raman analysis and counting statistics for fiber count measurement using optical microscopy were calculated and were compared with those of the conventional aerosol sampling methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...