Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Autophagy ; : 1-16, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39245437

RESUMEN

Macroautophagy/autophagy is a constitutively active catabolic lysosomal degradation pathway, often found dysregulated in human diseases. It is often considered to act in a cytoprotective manner and is commonly upregulated in cells undergoing stress. Its initiation is regulated at the protein level and does not require de novo protein synthesis. Historically, autophagy has been regarded as nonselective; however, it is now clear that different stimuli can lead to the selective degradation of cellular components via selective autophagy receptors (SARs). Due to its selective nature and the existence of multiple degradation pathways potentially acting in concert, monitoring of autophagy flux, i.e. selective autophagy-dependent protein degradation, should address this complexity. Here, we introduce a targeted proteomics approach monitoring abundance changes of 37 autophagy-related proteins covering process-relevant proteins such as the initiation complex and the Atg8-family protein lipidation machinery, as well as most known SARs. We show that proteins involved in autophagosome biogenesis are upregulated and spared from degradation under autophagy-inducing conditions in contrast to SARs, in a cell-line dependent manner. Classical bulk stimuli such as nutrient starvation mainly induce degradation of ubiquitin-dependent soluble SARs and not of ubiquitin-independent, membrane-bound SARs. In contrast, treatment with the iron chelator deferiprone leads to the degradation of ubiquitin-dependent and -independent SARs linked to mitophagy and reticulophagy/ER-phagy. Our approach is automatable and supports large-scale screening assays paving the way to (pre)clinical applications and monitoring of specific autophagy flux.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; ATG: autophagy related; BafA1: bafilomycin A1; BNIP1: BCL2 interacting protein 1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3-like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCPG1: cell cycle progression 1; CV: coefficients of variations; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DFP: deferiprone; ER: endoplasmic reticulum; FKBP8: FKBP prolyl isomerase 8; GABARAPL: GABA type A receptor associated protein like; LC: liquid chromatography; LOD: limit of detection; LOQ: limit of quantification; MAP1LC3: microtubule associated protein 1 light chain 3; MS: mass spectrometry; NCOA4: nuclear receptor coactivator 4; NBR1: NBR1 autophagy cargo receptor; NUFIP1: nuclear FMR1 interacting protein 1; OPTN: optineurin; PHB2: prohibitin 2; PNPLA2/ATGL: patatin like phospholipase domain containing 2; POI: protein of interest; PTM: posttranslational modification; PRM: parallel reaction monitoring; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RPS6KB1: ribosomal protein S6 kinase B1; RTN3: reticulon 3; SARs: selective autophagy receptors; SQSTM1/p62: sequestosome 1; STBD1: starch binding domain 1; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TNIP1: TNFAIP3 interacting protein 1; TOLLIP: toll interacting protein; ULK1: unc-51 like autophagy activating kinase 1; WBP2: WW domain binding protein 2; WDFY3/Alfy: WD repeat and FYVE domain containing 3; WIPI2: WD repeat domain, phosphoinositide interacting 2.

2.
Nat Cell Biol ; 26(9): 1571-1584, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39117797

RESUMEN

Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.


Asunto(s)
Autofagia , Caenorhabditis elegans , Restricción Calórica , Ayuno , Longevidad , Espermidina , Autofagia/efectos de los fármacos , Longevidad/efectos de los fármacos , Espermidina/metabolismo , Espermidina/farmacología , Animales , Humanos , Caenorhabditis elegans/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Factor 5A Eucariótico de Iniciación de Traducción , Drosophila melanogaster/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ratones , Masculino , Ratones Endogámicos C57BL
3.
Cell Rep ; 43(9): 114689, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39207901

RESUMEN

Autophagy initiation is regulated by the ULK1 kinase complex. To gain insights into functions of the holo-complex, we generated a deep interactome by combining affinity purification- and proximity labeling-mass spectrometry of all four complex members: ULK1, ATG13, ATG101, and RB1CC1/FIP200. Under starvation conditions, the ULK1 complex interacts with several protein and lipid kinases and phosphatases, implying the formation of a signalosome. Interestingly, several selective autophagy receptors also interact with ULK1, indicating the activation of selective autophagy pathways by nutrient starvation. One effector of the ULK1 complex is the HSC/HSP70 co-chaperone BAG2, which regulates the subcellular localization of the VPS34 lipid kinase complex member AMBRA1. Depending on the nutritional status, BAG2 has opposing roles. In growth conditions, the unphosphorylated form of BAG2 sequesters AMBRA1, attenuating autophagy induction. In starvation conditions, ULK1 phosphorylates BAG2 on Ser31, which supports the recruitment of AMBRA1 to the ER membrane, positively affecting autophagy.

5.
Sci Adv ; 9(35): eade7486, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656784

RESUMEN

In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔß3-αC oncoproteins usually lack five amino acids in the ß3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔß3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔß3-αC oncoproteins. We show that BRAFΔß3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔß3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔß3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Proteínas Proto-Oncogénicas B-raf , Humanos , Dimerización , Proteínas Proto-Oncogénicas B-raf/genética , Aminoácidos
6.
Sci Adv ; 9(35): eadh9219, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37647410

RESUMEN

Hyperosmotic stress occurs in several diseases, but its long-term effects are largely unknown. We used sorbitol-treated human fibroblasts in 3D culture to study the consequences of hyperosmotic stress in the skin. Sorbitol regulated many genes, which help cells cope with the stress condition. The most robustly regulated gene encodes serine protease 35 (PRSS35). Its regulation by hyperosmotic stress was dependent on the kinases p38 and JNK and the transcription factors NFAT5 and ATF2. We identified different collagens and collagen-associated proteins as putative PRSS35 binding partners. This is functionally important because PRSS35 affected the extracellular matrix proteome, which limited cell proliferation. The in vivo relevance of these findings is reflected by the coexpression of PRSS35 and its binding partners in human skin wounds, where hyperosmotic stress occurs as a consequence of excessive water loss. These results identify PRSS35 as a key regulator of the matrisome under hyperosmotic stress conditions.


Asunto(s)
Matriz Extracelular , Fibroblastos , Humanos , Endopeptidasas , Sorbitol , Serina Proteasas
7.
Proc Natl Acad Sci U S A ; 120(34): e2211281120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579175

RESUMEN

Autophagy serves as a defense mechanism against intracellular pathogens, but several microorganisms exploit it for their own benefit. Accordingly, certain herpesviruses include autophagic membranes into their infectious virus particles. In this study, we analyzed the composition of purified virions of the Epstein-Barr virus (EBV), a common oncogenic γ-herpesvirus. In these, we found several components of the autophagy machinery, including membrane-associated LC3B-II, and numerous viral proteins, such as the capsid assembly proteins BVRF2 and BdRF1. Additionally, we showed that BVRF2 and BdRF1 interact with LC3B-II via their common protein domain. Using an EBV mutant, we identified BVRF2 as essential to assemble mature capsids and produce infectious EBV. However, BdRF1 was sufficient for the release of noninfectious viral envelopes as long as autophagy was not compromised. These data suggest that BVRF2 and BdRF1 are not only important for capsid assembly but together with the LC3B conjugation complex of ATG5-ATG12-ATG15L1 are also critical for EBV envelope release.


Asunto(s)
Cápside , Infecciones por Virus de Epstein-Barr , Humanos , Cápside/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Envoltura Viral/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo
8.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37442609

RESUMEN

The mitophagic degradation of mitochondrial matrix proteins in Saccharomyces cerevisiae was previously shown to be selective, reflecting a pre-engulfment sorting step within the mitochondrial network. This selectivity is regulated through phosphorylation of mitochondrial matrix proteins by the matrix kinases Pkp1 and Pkp2, which in turn appear to be regulated by the phosphatase Aup1/Ptc6. However, these same proteins also regulate the phosphorylation status and catalytic activity of the yeast pyruvate dehydrogenase complex, which is critical for mitochondrial metabolism. To understand the relationship between these two functions, we evaluated the role of the pyruvate dehydrogenase complex in mitophagic selectivity. Surprisingly, we identified a novel function of the complex in regulating mitophagic selectivity, which is independent of its enzymatic activity. Our data support a model in which the pyruvate dehydrogenase complex directly regulates the activity of its associated kinases and phosphatases. This regulatory interaction then determines the phosphorylation state of mitochondrial matrix proteins and their mitophagic fates.


Asunto(s)
Complejo Piruvato Deshidrogenasa , Proteínas de Saccharomyces cerevisiae , Fosforilación , Complejo Piruvato Deshidrogenasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/metabolismo
9.
Curr Biol ; 33(10): 2008-2023.e8, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37146609

RESUMEN

The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resistance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hypersensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that functions to control transporter substrate preference during plant growth and defense balance decisions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/metabolismo , Tiazoles/metabolismo , Fitoalexinas , Proteínas de Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
10.
Front Microbiol ; 13: 909109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783399

RESUMEN

Geobacter sulfurreducens is a widely applied microorganism for the reduction of toxic metal salts, as an electron source for bioelectrochemical devices, and as a reagent for the synthesis of nanoparticles. In order to understand the influence of metal salts, and of electron transporting, multiheme c-cytochromes on the electron flux during respiration of G. sulfurreducens, the reduction kinetic of Fe3+, Co3+, V5+, Cr6+, and Mn7+ containing complexes were measured. Starting from the resting phase, each G. sulfurreducens cell produced an electron flux of 3.7 × 105 electrons per second during the respiration process. Reduction rates were within ± 30% the same for the 6 different metal salts, and reaction kinetics were of zero order. Decrease of c-cytochrome concentrations by downregulation and mutation demonstrated that c-cytochromes stabilized respiration rates by variation of their redox states. Increasing Fe2+/heme levels increased electron flux rates, and induced respiration flexibility. The kinetic effects parallel electrochemical results of G. sulfurreducens biofilms on electrodes, and might help to optimize bioelectrochemical devices.

11.
Elife ; 112022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35700329

RESUMEN

Spermatogenesis is a highly specialized differentiation process driven by a dynamic gene expression program and ending with the production of mature spermatozoa. Whereas hundreds of genes are known to be essential for male germline proliferation and differentiation, the contribution of several genes remains uncharacterized. The predominant expression of the latest globin family member, androglobin (Adgb), in mammalian testis tissue prompted us to assess its physiological function in spermatogenesis. Adgb knockout mice display male infertility, reduced testis weight, impaired maturation of elongating spermatids, abnormal sperm shape, and ultrastructural defects in microtubule and mitochondrial organization. Epididymal sperm from Adgb knockout animals display multiple flagellar malformations including coiled, bifid or shortened flagella, and erratic acrosomal development. Following immunoprecipitation and mass spectrometry, we could identify septin 10 (Sept10) as interactor of Adgb. The Sept10-Adgb interaction was confirmed both in vivo using testis lysates and in vitro by reciprocal co-immunoprecipitation experiments. Furthermore, the absence of Adgb leads to mislocalization of Sept10 in sperm, indicating defective manchette and sperm annulus formation. Finally, in vitro data suggest that Adgb contributes to Sept10 proteolysis in a calmodulin-dependent manner. Collectively, our results provide evidence that Adgb is essential for murine spermatogenesis and further suggest that Adgb is required for sperm head shaping via the manchette and proper flagellum formation.


Asunto(s)
Globinas , Infertilidad Masculina , Animales , Fertilidad , Globinas/metabolismo , Infertilidad Masculina/genética , Masculino , Mamíferos , Ratones , Ratones Noqueados , Semen , Cola del Espermatozoide , Espermátides/metabolismo , Espermatozoides , Testículo/metabolismo
12.
Biomedicines ; 10(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35327330

RESUMEN

Interactions between macrophages, cardiac cells and the extracellular matrix are crucial for cardiac repair following myocardial infarction (MI). We hypothesized that cell-based treatments might modulate these interactions. After validating that bone marrow cells (BMC) associated with fibrin lowered the infarct extent and improved cardiac function, we interrogated the influence of fibrin, as a biologically active scaffold, on the secretome of BMC and the impact of their association on macrophage fate and cardiomyoblast proliferation. In vitro, BMC were primed with fibrin (F-BMC). RT-PCR and proteomic analyses showed that fibrin profoundly influenced the gene expression and the secretome of BMCs. Consequently, the secretome of F-BMC increased the spreading of cardiomyoblasts and showed an alleviated immunomodulatory capacity. Indeed, the proliferation of anti-inflammatory macrophages was augmented, and the phenotype of pro-inflammatory switched as shown by downregulated Nos2, Il6 and IL1b and upregulated Arg1, CD163, Tgfb and IL10. Interestingly, the secretome of F-BMC educated-macrophages stimulated the incorporation of EdU in cardiomyoblasts. In conclusion, our study provides evidence that BMC/fibrin-based treatment improved cardiac structure and function following MI. In vitro proofs-of-concept reveal that the F-BMC secretome increases cardiac cell size and promotes an anti-inflammatory response. Thenceforward, the F-BMC educated macrophages sequentially stimulated cardiac cell proliferation.

13.
Elife ; 112022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35357307

RESUMEN

The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins. Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome incorporation. Recent evidence has highlighted that dedicated chaperones protect individual, unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4, reduces the degradation of the encoding RPL3 and RPL4 mRNAs in the yeast Saccharomyces cerevisiae. In both cases, negative regulation of mRNA levels occurs when the availability of the dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory machinery consisting of the nascent-polypeptide-associated complex and the Caf130-associated Ccr4-Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we have uncovered an unprecedented regulatory mechanism that adjusts the de novo synthesis of Rpl3 and Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the potentially detrimental effects of their surplus production.


Living cells are packed full of molecules known as proteins, which perform many vital tasks the cells need to survive and grow. Machines called ribosomes inside the cells use template molecules called messenger RNAs (or mRNAs for short) to produce proteins. The newly-made proteins then have to travel to a specific location in the cell to perform their tasks. Some newly-made proteins are prone to forming clumps, so cells have other proteins known as chaperones that ensure these clumps do not form. The ribosomes themselves are made up of several proteins, some of which are also prone to clumping as they are being produced. To prevent this from happening, cells control how many ribosomal proteins they make, so there are just enough to form the ribosomes the cell needs at any given time. Previous studies found that, in yeast, two ribosomal proteins called Rpl3 and Rpl4 each have their own dedicated chaperone to prevent them from clumping. However, it remained unclear whether these chaperones are also involved in regulating the levels of Rpl3 and Rpl4. To address this question, Pillet et al. studied both of these dedicated chaperones in yeast cells. The experiments showed that the chaperones bound to their target proteins (either units of Rpl3 or Rpl4) as they were being produced on the ribosomes. This protected the template mRNAs the ribosomes were using to produce these proteins from being destroyed, thus allowing further units of Rpl3 and Rpl4 to be produced. When enough Rpl3 and Rpl4 units were made, there were not enough of the chaperones to bind them all, leaving the mRNA templates unprotected. This led to the destruction of the mRNA templates, which decreased the numbers of Rpl3 and Rpl4 units being produced. The work of Pillet et al. reveals a feedback mechanism that allows yeast to tightly control the levels of Rpl3 and Rpl4. In the future, these findings may help us understand diseases caused by defects in ribosomal proteins, such as Diamond-Blackfan anemia, and possibly also neurodegenerative diseases caused by clumps of proteins forming in cells. The next step will be to find out whether the mechanism uncovered by Pillet et al. also exists in human and other mammalian cells.


Asunto(s)
Proteínas Ribosómicas , Proteínas de Saccharomyces cerevisiae , Proteostasis , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
J Exp Bot ; 73(8): 2369-2384, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35088853

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades transmit environmental signals and induce stress and defence responses in plants. These signalling cascades are negatively controlled by specific Ser/Thr protein phosphatases of the type 2C (PP2C) and dual-specificity phosphatase (DSP) families that inactivate stress-induced MAPKs; however, the interplay between phosphatases of these different types has remained unknown. This work reveals that different Arabidopsis MAPK phosphatases, the PP2C-type AP2C1 and the DSP-type MKP1, exhibit both specific and overlapping functions in plant stress responses. Each single mutant, ap2c1 and mkp1, and the ap2c1 mkp1 double mutant displayed enhanced stress-induced activation of the MAPKs MPK3, MPK4, and MPK6, as well as induction of a set of transcription factors. Moreover, ap2c1 mkp1 double mutants showed an autoimmune-like response, associated with increased levels of the stress hormones salicylic acid and ethylene, and of the phytoalexin camalexin. This phenotype was reduced in the ap2c1 mkp1 mpk3 and ap2c1 mkp1 mpk6 triple mutants, suggesting that the autoimmune-like response is due to MAPK misregulation. We conclude that the evolutionarily distant MAPK phosphatases AP2C1 and MKP1 contribute crucially to the tight control of MAPK activities, ensuring appropriately balanced stress signalling and suppression of autoimmune-like responses during plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo
15.
Cell Rep ; 37(13): 110149, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965436

RESUMEN

The eukaryotic TORC1 kinase assimilates diverse environmental cues, including growth factors and nutrients, to control growth by tuning anabolic and catabolic processes. In yeast, TORC1 stimulates protein synthesis in response to abundant nutrients primarily through its proximal effector kinase Sch9. Conversely, TORC1 inhibition following nutrient limitation unlocks various distally controlled kinases (e.g., Atg1, Gcn2, Npr1, Rim15, Slt2/Mpk1, and Yak1), which cooperate through poorly defined circuits to orchestrate the quiescence program. To better define the signaling landscape of the latter kinases, we use in vivo quantitative phosphoproteomics. Through pinpointing known and uncharted Npr1, Rim15, Slt2/Mpk1, and Yak1 effectors, our study examines the architecture of the distally controlled TORC1 kinase network. Accordingly, this is built on a combination of discrete, convergent, and multilayered feedback regulatory mechanisms, which likely ensure homeostatic control of and/or robust responses by TORC1 and its effector kinases under fluctuating nutritional conditions.


Asunto(s)
Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/farmacología , Fosfoproteínas/metabolismo , Proteínas Quinasas/química , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteoma/análisis , Saccharomyces cerevisiae/efectos de los fármacos
16.
Elife ; 102021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34725037

RESUMEN

In cooperative systems exhibiting division of labor, such as microbial communities, multicellular organisms, and social insect colonies, individual units share costs and benefits through both task specialization and exchanged materials. Socially exchanged fluids, like seminal fluid and milk, allow individuals to molecularly influence conspecifics. Many social insects have a social circulatory system, where food and endogenously produced molecules are transferred mouth-to-mouth (stomodeal trophallaxis), connecting all the individuals in the society. To understand how these endogenous molecules relate to colony life, we used quantitative proteomics to investigate the trophallactic fluid within colonies of the carpenter ant Camponotus floridanus. We show that different stages of the colony life cycle circulate different types of proteins: young colonies prioritize direct carbohydrate processing; mature colonies prioritize accumulation and transmission of stored resources. Further, colonies circulate proteins implicated in oxidative stress, ageing, and social insect caste determination, potentially acting as superorganismal hormones. Brood-caring individuals that are also closer to the queen in the social network (nurses) showed higher abundance of oxidative stress-related proteins. Thus, trophallaxis behavior could provide a mechanism for distributed metabolism in social insect societies. The ability to thoroughly analyze the materials exchanged between cooperative units makes social insect colonies useful models to understand the evolution and consequences of metabolic division of labor at other scales.


Division of labor is essential for cooperation, because groups can achieve more when individuals specialize in different tasks. This happens across the natural world, from different cells in organisms performing specific roles, to the individuals in an ant colony carrying out diverse duties. In both of these systems, individuals work together to ensure the survival of the collective unit ­ the body or the colony ­ instead of competing against each other. One of the main ways division of labor is evident within these two systems is regarding reproduction. Both in the body and in an ant colony, only one or a few individual units can reproduce, while the rest provide support. In the case of ant colonies, only queens and males reproduce, while the young workers nurse the brood and older workers forage for food. This intense cooperation requires close communication between individual units ­ in the case of some species of ants, by sharing fluids mouth-to-mouth. These fluids contain food but also many molecules produced by the ants themselves, including proteins. Given that both individuals and the colony as a whole change as they age ­ with workers acquiring new roles, and new queens and males only reared once the colony is mature ­ it is likely that the proteins transmitted in the fluid also change. To better understand whether the lifecycles of individuals and the age of the colony affect the fluids shared by carpenter ants Camponotus floridanus, Hakala et al. examined the ant-produced proteins in these fluids. This revealed differences in the proteins shared by young and mature colonies, and young nurse ants and older forager ants. In young colonies, the fluids contained proteins involved in fast sugar processing; while in mature colonies, the fluids contained more proteins to store nutrients, which help insect larvae grow into larger individuals, like queens. Young worker ants, who spend their time nursing the brood, produced more anti-aging proteins. This may be because these ants are in close contact with the queen, who lives much longer than the rest of the ants in the colony. Taken together, these observations suggest that ants divide the labor of metabolism, as well as work and reproduction. Dividing the labor of metabolism among individuals is one more similarity between ants and the cells of a multicellular organism, like a fly or a human. Division of labor allows the sharing of burden, with some individuals lightening the load of others. Understanding how ants achieve this by sharing fluids could shed new light on this complex exchange at other scales or in other organisms. By matching proteins to life stages, researchers have a starting point to examine individual molecules in more detail.


Asunto(s)
Hormigas/fisiología , Biomarcadores/metabolismo , Animales , Hormigas/metabolismo , Conducta Social
17.
Cell Rep ; 36(13): 109762, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34592149

RESUMEN

The evolutionarily conserved ULK1 kinase complex acts as gatekeeper of canonical autophagy and regulates induction of autophagosome biogenesis. To better understand control of ULK1 and analyze whether ULK1 has broader functions that are also linked to the later steps of autophagy, we perform comprehensive phosphoproteomic analyses. Combining in vivo with in vitro data, we identify numerous direct ULK1 target sites within autophagy-relevant proteins that are critical for autophagosome maturation and turnover. In addition, we highlight an intimate crosstalk between ULK1 and several phosphatase complexes. ULK1 is not only a PP2A target but also directly phosphorylates the regulatory PP2A subunit striatin, activating PP2A and serving as positive feedback to promote autophagy-dependent protein turnover. Thus, ULK1 and phosphatase activities are tightly coordinated to robustly regulate protein degradation by autophagy.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/fisiología , Proteínas de Unión a Calmodulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína Fosfatasa 2/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional/fisiología
18.
EMBO Mol Med ; 13(10): e14392, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34459121

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB), a genetic skin blistering disease, is a paradigmatic condition of tissue fragility-driven multi-organ fibrosis. Here, longitudinal analyses of the tissue proteome through the course of naturally developing disease in RDEB mice revealed that increased pro-inflammatory immunity associates with fibrosis evolution. Mechanistically, this fibrosis is a consequence of altered extracellular matrix organization rather than that of increased abundance of major structural proteins. In a humanized system of disease progression, we targeted inflammatory cell fibroblast communication with Ang-(1-7)-an anti-inflammatory heptapeptide of the renin-angiotensin system, which reduced the fibrosis-evoking aptitude of RDEB cells. In vivo, systemic administration of Ang-(1-7) efficiently attenuated progression of multi-organ fibrosis and increased survival of RDEB mice. Collectively, our study shows that selective down-modulation of pro-inflammatory immunity may mitigate injury-induced fibrosis. Furthermore, together with published data, our data highlight molecular diversity among fibrotic conditions. Both findings have direct implications for the design of therapies addressing skin fragility and fibrosis.


Asunto(s)
Epidermólisis Ampollosa Distrófica , Animales , Colágeno Tipo VII , Epidermólisis Ampollosa Distrófica/patología , Fibroblastos/patología , Fibrosis , Ratones
19.
Sci Rep ; 11(1): 12242, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112905

RESUMEN

The circadian clock regulates many biochemical and physiological pathways, and lack of clock genes, such as Period (Per) 2, affects not only circadian activity rhythms, but can also modulate feeding and mood-related behaviors. However, it is not known how cell-type specific expression of Per2 contributes to these behaviors. In this study, we find that Per2 in glial cells is important for balancing mood-related behaviors, without affecting circadian activity parameters. Genetic and adeno-associated virus-mediated deletion of Per2 in glial cells of mice leads to reduced despair and anxiety. This is paralleled by an increase of the GABA transporter 2 (Gat2/Slc6a13) and Dopamine receptor D3 (Drd3) mRNA, and a reduction of glutamate levels in the nucleus accumbens (NAc). Interestingly, neuronal Per2 knock-out also reduces despair, but does not influence anxiety. The change in mood-related behavior is not a result of a defective molecular clock, as glial Bmal1 deletion has no effect on neither despair nor anxiety. Exclusive deletion of Per2 in glia of the NAc reduced despair, but had no influence on anxiety. Our data provide strong evidence for an important role of glial Per2 in regulating mood-related behavior.


Asunto(s)
Afecto , Conducta Animal , Neuroglía/metabolismo , Proteínas Circadianas Period/genética , Eliminación de Secuencia , Animales , Astrocitos/metabolismo , Cruzamiento , Ritmo Circadiano , Dependovirus/genética , Expresión Génica , Estudios de Asociación Genética , Vectores Genéticos/genética , Ratones , Fenotipo , Transducción Genética
20.
Front Physiol ; 12: 665476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935811

RESUMEN

Daily recurring events can be predicted by animals based on their internal circadian timing system. However, independently from the suprachiasmatic nuclei (SCN), the central pacemaker of the circadian system in mammals, restriction of food access to a particular time of day elicits food anticipatory activity (FAA). This suggests an involvement of other central and/or peripheral clocks as well as metabolic signals in this behavior. One of the metabolic signals that is important for FAA under combined caloric and temporal food restriction is ß-hydroxybutyrate (ßOHB). Here we show that the monocarboxylate transporter 1 (Mct1), which transports ketone bodies such as ßOHB across membranes of various cell types, is involved in FAA. In particular, we show that lack of the Mct1 gene in the liver, but not in neuronal or glial cells, reduces FAA in mice. This is associated with a reduction of ßOHB levels in the blood. Our observations suggest an important role of ketone bodies and its transporter Mct1 in FAA under caloric and temporal food restriction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...