Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Acta Neuropathol ; 147(1): 64, 2024 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556574

RESUMEN

Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear. Our study employed postmortem hypothalamic tissues from PWS T1 and T2 individuals, conducting transcriptomic analyses and cell-specific protein profiling in white matter, neurons, and glial cells to unravel the cellular and molecular basis of phenotypic severity in PWS sub-genotypes. In PWS T1, key pathways for cell structure, integrity, and neuronal communication are notably diminished, while glymphatic system activity is heightened compared to PWS T2. The microglial defect in PWS T1 appears to stem from gene haploinsufficiency, as global and myeloid-specific Cyfip1 haploinsufficiency in murine models demonstrated. Our findings emphasize microglial phagolysosome dysfunction and altered neural communication as crucial contributors to the severity of PWS T1's phenotype.


Asunto(s)
Síndrome de Prader-Willi , Humanos , Ratones , Animales , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/psicología , Microglía , Proteínas Portadoras/genética , Fenotipo , Fagosomas , Proteínas Adaptadoras Transductoras de Señales/genética
2.
Eur J Hum Genet ; 31(8): 918-924, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37337089

RESUMEN

Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder that affects the skin and the nervous system. The condition is completely penetrant with extreme clinical variability, resulting in unpredictable manifestations in affected offspring, complicating reproductive decision-making. One of the reproductive options to prevent the birth of affected offspring is preimplantation genetic testing (PGT). We performed a retrospective review of the medical files of all couples (n = 140) referred to the Dutch PGT expert center with the indication NF1 between January 1997 and January 2020. Of the couples considering PGT, 43 opted out and 15 were not eligible because of failure to identify the underlying genetic defect or unmet criteria for in vitro fertilization (IVF) treatment. The remaining 82 couples proceeded with PGT. Fertility assessment prior to IVF treatment showed a higher percentage of male infertility in males affected with NF1 compared to the partners of affected females. Cardiac evaluations in women with NF1 showed no contraindications for IVF treatment or pregnancy. For 67 couples, 143 PGT cycles were performed. Complications of IVF treatment were not more prevalent in affected females compared to partners of affected males. The transfer of 174 (out of 295) unaffected embryos led to 42 ongoing pregnancies with a pregnancy rate of 24.1% per embryo transfer. There are no documented cases of misdiagnosis following PGT in this cohort. With these results, we aim to provide an overview of PGT for NF1 with regard to success rate and safety, to optimize reproductive counseling and PGT treatment for NF1 patients.


Asunto(s)
Neurofibromatosis 1 , Diagnóstico Preimplantación , Embarazo , Humanos , Masculino , Femenino , Diagnóstico Preimplantación/métodos , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/genética , Pruebas Genéticas/métodos , Fertilización In Vitro , Transferencia de Embrión/psicología , Estudios Retrospectivos , Aneuploidia
3.
Fam Cancer ; 22(1): 103-118, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35856126

RESUMEN

Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found in 5-10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syndrome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identified 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any relation cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of KS-patients into adulthood could provide further insights.


Asunto(s)
Anomalías Múltiples , Rabdomiosarcoma Embrionario , Humanos , Niño , Femenino , Rabdomiosarcoma Embrionario/genética , Fenotipo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , ADN , Mutación
4.
Eur J Med Genet ; 66(1): 104670, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36414205

RESUMEN

BACKGROUND: Since the first description of a BRWD3-associated nonsydromic intellectual disability (ID) disorder in 2007, 21 additional families have been reported in the literature. METHODS: Using exome sequencing (ES) and international data sharing, we identified 14 additional unrelated individuals with pathogenic BRWD3 variants (12 males and 2 females, including one with skewed X-inactivation). We reviewed the 31 previously published cases in the literature with clinical data available, and describe the collective phenotypes of 43 males and 2 females, with 33 different BRWD3 variants. RESULTS: The most common features in males (excluding one patient with a mosaic variant) included ID (39/39 males), speech delay (24/25 males), postnatal macrocephaly (28/35 males) with prominent forehead (18/25 males) and large ears (14/26 males), and obesity (12/27 males). Both females presented with macrocephaly, speech delay, and epilepsy, while epilepsy was only observed in 4/41 males. Among the 28 variants with available segregation reported, 19 were inherited from unaffected mothers and 9 were de novo. CONCLUSION: This study demonstrates that the BRWD3-related phenotypes are largely non-specific, leading to difficulty in clinical recognition of this disorder. A genotype-first approach, however, allows for the more efficient diagnosis of the BRWD3-related nonsyndromic ID. The refined clinical features presented here may provide additional diagnostic assistance for reverse phenotyping efforts.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Megalencefalia , Masculino , Femenino , Humanos , Quinasas Janus/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Discapacidad Intelectual/genética , Síndrome , Megalencefalia/genética , Fenotipo , Mutación , Factores de Transcripción/genética
5.
Cereb Cortex ; 33(9): 5210-5217, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36255323

RESUMEN

Triple X syndrome is a sex chromosomal aneuploidy characterized by the presence of a supernumerary X chromosome, resulting in a karyotype of 47,XXX in affected females. It has been associated with a variable cognitive, behavioral, and psychiatric phenotype, but little is known about its effects on brain function. We therefore conducted 7 T resting-state functional magnetic resonance imaging and compared data of 19 adult individuals with 47,XXX and 21 age-matched healthy control women using independent component analysis and dual regression. Additionally, we examined potential relationships between social cognition and social functioning scores, and IQ, and mean functional connectivity values. The 47,XXX group showed significantly increased functional connectivity of the fronto-parietal resting-state network with the right postcentral gyrus. Resting-state functional connectivity (rsFC) variability was not associated with IQ and social cognition and social functioning deficits in the participants with 47,XXX. We thus observed an effect of a supernumerary X chromosome in adult women on fronto-parietal rsFC. These findings provide additional insight into the role of the X chromosome on functional connectivity of the brain. Further research is needed to understand the clinical implications of altered rsFC in 47,XXX.


Asunto(s)
Mapeo Encefálico , Encéfalo , Femenino , Animales , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
6.
Eur Psychiatry ; 66(1): e7, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36540940

RESUMEN

BACKGROUND: Women with triple X syndrome (TXS) have an extra X chromosome. TXS appeared to be associated with psychiatric disorders in biased or underpowered studies. AIM: This study aims to describe the prevalence of psychiatric disorders in adults with TXS in a relatively large and less biased group of participants. METHOD: In this cross-sectional study, data were collected from 34 women with TXS (mean age = 32.9; s.d. = 13.1) and 31 controls (mean age = 34.9; s.d. = 13.7). Psychiatric disorders were assessed using the MINI International Neuropsychiatric Interview (MINI) and the adult behavior checklist (ABCL). Trait and state anxiety were assessed using the State-Trait Anxiety Inventory. RESULTS: In the TXS group, MINI results showed a higher prevalence of major depressive episodes (43.3%), psychotic disorders (29.4%), and suicidality (23.5%). Only 50% of the TXS group earned a normal score for the total syndrome score using the ABCL. In addition, levels of trait anxiety were higher in the TXS group. Only three women in each group received psychotropic medication. Impaired social functioning appeared to represent a major risk factor in TXS as regards psychotic, affective disorders, trait anxiety, and low self-esteem. CONCLUSIONS: Women with TXS are vulnerable to developing psychiatric disorders, and women with both TXS and impaired social functioning are even more vulnerable.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Mentales , Adulto , Humanos , Femenino , Trastorno Depresivo Mayor/epidemiología , Estudios Transversales , Interacción Social , Trastornos Mentales/epidemiología , Trastornos Mentales/psicología , Factores de Riesgo
7.
Nat Commun ; 13(1): 6664, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333305

RESUMEN

Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.


Asunto(s)
Proteínas de Ciclo Celular , Microcefalia , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microcefalia/genética , Reparación del ADN/genética , Cromosomas/metabolismo , Inestabilidad Genómica , Proteínas de Unión al ADN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo
8.
J Pediatr Genet ; 11(1): 51-58, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35186391

RESUMEN

The combination of short stature, auditory canal atresia, mandibular hypoplasia, and skeletal abnormalities (SAMS, OMIM: 602471) has been reported as an ultra-rare, autosomal-recessive developmental disorder with unique skeletal anomalies. To the present date, only four affected individuals have been reported. There are several striking orthopaedic diagnoses within the SAMS syndrome. In particular, the scapulohumoral synostosis and the bilateral congenital ventral dislocation of the hips. The purpose of this report is to underline the importance of recognizing pathognomic features of SAMS syndrome. Whenever a bilateral congenital ventral dislocation of the hips and/or a scapulohumoral synostosis is found or clinically suspected, SAMS syndrome should be considered as the primary diagnosis until proven otherwise.

9.
J Neurodev Disord ; 14(1): 14, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196987

RESUMEN

BACKGROUND: Triple X syndrome (47,XXX) is a relatively common sex chromosomal aneuploidy characterized by the presence of a supernumerary X chromosome in females and has been associated with a variable cognitive, behavioural and psychiatric phenotype. 47,XXX may serve as a suitable model for studying the effect of genetic architecture on brain morphology. Previous studies have shown alterations in brain structure in 47,XXX particularly in childhood and adolescence. In this study, we examined subcortical and cortical brain morphology in adult women with 47,XXX using ultra-high field 7T MRI. Given previous evidence of impaired social functioning and emotion recognition in adults with 47,XXX, we also investigated the relationship of these functions with brain morphology. METHODS: Twenty-one adult women with 47,XXX and 22 age- and sex-matched healthy controls were included. Structural T1-weighted images were acquired using a 7-Tesla magnetic resonance scanner. Measures of subcortical brain volumes, cortical surface area and thickness, and cortical folding were obtained and compared between the groups using general linear models. Additionally, we examined potential relationships between brain outcome measures and social functioning and social cognition in 47,XXX using correlation analyses. RESULTS: Adults with 47,XXX showed lower volumes of the thalamus, caudate, putamen, hippocampus, nucleus accumbens and pallidum, and larger lateral ventricle volumes. Lower surface area was found in the superior frontal gyrus and superior temporal gyrus in 47,XXX participants compared to healthy controls. Altered cortical thickness and cortical folding were not present in 47,XXX. Cortical thickness was associated with social cognition in 47,XXX. CONCLUSIONS: Results suggest that a supernumerary X chromosome in females affects subcortical and lateral ventricle volumes, and cortical surface area in adulthood. 47,XXX may serve as a suitable model for studying genetic influences on structural brain morphology across developmental stages in order to understand neurobiological mechanisms underlying cognitive and behavioural impairments.


Asunto(s)
Trastornos de los Cromosomas Sexuales del Desarrollo Sexual , Adulto , Encéfalo/patología , Cromosomas Humanos X , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Aberraciones Cromosómicas Sexuales , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/patología , Trisomía
10.
Clin Genet ; 101(2): 183-189, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34671974

RESUMEN

The caudal type homeobox 2 (CDX2) gene encodes a developmental regulator involved in caudal body patterning. Only three pathogenic variants in human CDX2 have been described, in patients with persistent cloaca, sirenomelia and/or renal and anogenital malformations. We identified five patients with de novo or inherited pathogenic variants in CDX2 with clinical phenotypes that partially overlap with previous cases, that is, imperforate anus and renal, urogenital and limb abnormalities. However, additional clinical features were seen including vertebral agenesis and we describe considerable phenotypic variability, even in unrelated patients with the same recurrent p.(Arg237His) variant. We propose CDX2 variants as rare genetic cause for a multiple congenital anomaly syndrome that can include features of caudal regression syndrome and VACTERL. A causative role is further substantiated by the relationship between CDX2 and other proteins encoded by genes that were previously linked to caudal abnormalities in humans, for example, TBXT (sacral agenesis and other vertebral segmentation defects) and CDX1 (anorectal malformations). Our findings confirm the essential role of CDX2 in caudal morphogenesis and formation of cloacal derivatives in humans, which to date has only been well characterized in animals.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Factor de Transcripción CDX2/genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Región Sacrococcígea/anomalías , Alelos , Niño , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Secuenciación del Exoma
12.
Acta Neuropathol ; 143(2): 245-262, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34918187

RESUMEN

Nucleotide metabolism is a complex pathway regulating crucial cellular processes such as nucleic acid synthesis, DNA repair and proliferation. This study shows that impairment of the biosynthesis of one of the building blocks of DNA, dTTP, causes a severe, early-onset neurodegenerative disease. Here, we describe two unrelated children with bi-allelic variants in DTYMK, encoding dTMPK, which catalyzes the penultimate step in dTTP biosynthesis. The affected children show severe microcephaly and growth retardation with minimal neurodevelopment. Brain imaging revealed severe cerebral atrophy and disappearance of the basal ganglia. In cells of affected individuals, dTMPK enzyme activity was minimal, along with impaired DNA replication. In addition, we generated dtymk mutant zebrafish that replicate this phenotype of microcephaly, neuronal cell death and early lethality. An increase of ribonucleotide incorporation in the genome as well as impaired responses to DNA damage were observed in dtymk mutant zebrafish, providing novel pathophysiological insights. It is highly remarkable that this deficiency is viable as an essential component for DNA cannot be generated, since the metabolic pathway for dTTP synthesis is completely blocked. In summary, by combining genetic and biochemical approaches in multiple models we identified loss-of-function of DTYMK as the cause of a severe postnatal neurodegenerative disease and highlight the essential nature of dTTP synthesis in the maintenance of genome stability and neuronal survival.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Nucleósido-Fosfato Quinasa/genética , Animales , Femenino , Humanos , Masculino , Microcefalia/genética , Mutación , Pez Cebra
13.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33909990

RESUMEN

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Asunto(s)
Anomalías Múltiples/patología , Adenosina Trifosfatasas/genética , Anomalías Craneofaciales/patología , Metilación de ADN , Epigénesis Genética , Trastornos del Crecimiento/patología , Defectos del Tabique Interventricular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Fenotipo , Anomalías Múltiples/genética , Estudios de Casos y Controles , Estudios de Cohortes , Anomalías Craneofaciales/genética , Femenino , Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/genética , Defectos del Tabique Interventricular/genética , Humanos , Recién Nacido , Masculino , Trastornos del Neurodesarrollo/genética
14.
BJPsych Open ; 7(2): e51, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33583482

RESUMEN

BACKGROUND: Triple X syndrome (TXS) is caused by aneuploidy of the X chromosome and is associated with impaired social functioning in children; however, its effect on social functioning and emotion recognition in adults is poorly understood. AIMS: The aim of this study was to investigate social functioning and emotion recognition in adults with TXS. METHOD: This cross-sectional cohort study was designed to compare social functioning and emotion recognition between adults with TXS (n = 34) and an age-matched control group (n = 31). Social functioning was assessed with the Adult Behavior Checklist and Social Responsiveness Scale for Adults. Emotion recognition was assessed with the Emotion Recognition Task in the Cambridge Neuropsychological Test Automated Battery. Differences were analysed by Mann-Whitney U-test. RESULTS: Compared with controls, women with TXS scored higher on the Adult Behavior Checklist, including the Withdrawn scale (P < 0.001, effect size 0.4) and Thought Problems scale (P < 0.001, effect size 0.4); and higher on the Social Responsiveness Scale for Adults, indicating impaired social functioning (P < 0.001, effect size 0.5). In addition, women with TXS performed worse on the Emotion Recognition Task, particularly with respect to recognising sadness (P < 0.005, effect size 0.4), fear (P < 0.01, effect size 0.4) and disgust (P < 0.02, effect size 0.3). CONCLUSIONS: Our findings indicate that adults with TXS have a higher prevalence of impaired social functioning and emotion recognition. These results highlight the relevance of sex chromosome aneuploidy as a potential model for studying disorders characterised by social impairments such as autism spectrum disorder, particularly among women.

16.
Orphanet J Rare Dis ; 15(1): 294, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076953

RESUMEN

BACKGROUND: MAGEL2-associated Schaaf-Yang syndrome (SHFYNG, OMIM #615547, ORPHA: 398069), which was identified in 2013, is a rare disorder caused by truncating variants of the paternal copy of MAGEL2, which is localized in the imprinted region on 15q11.2q13. The phenotype of SHFYNG in childhood partially overlaps with that of the well-established Prader-Willi syndrome (PWS, OMIM #176270). While larger numbers of younger individuals with SHFYNG have been recently published, the phenotype in adulthood is not well established. We recruited 7 adult individuals (aged 18 to 36) with molecularly confirmed SHFYNG and collected data regarding the clinical profile including eating habits, sleep, behavior, personal autonomy, psychiatric abnormalities and other medical conditions, as well as information about the respective phenotypes in childhood. RESULTS: Within our small cohort, we identified a range of common features, such as disturbed sleep, hypoactivity, social withdrawal and anxiety, but also noted considerable differences at the level of personal autonomy and skills. Behavioral problems were frequent, and a majority of individuals displayed weight gain and food-seeking behavior, along with mild intellectual disability or borderline intellectual function. Classical symptoms of SHFYNG in childhood were reported for most individuals. CONCLUSION: Our findings indicate a high variability of the functional abilities and social participation of adults with SHFYNG. A high prevalence of obesity within our cohort was notable, and uncontrollable food intake was a major concern for some caregivers. The phenotypes of PWS and SHFYNG in adulthood might be more difficult to discern than the phenotypes in childhood. Molecular genetic testing for SHFYNG should therefore be considered in adults with the suspected diagnosis of PWS, if testing for PWS has been negative.


Asunto(s)
Artrogriposis , Discapacidad Intelectual , Síndrome de Prader-Willi , Adulto , Humanos , Discapacidad Intelectual/genética , Fenotipo , Síndrome de Prader-Willi/genética , Proteínas/genética
17.
Am J Hum Genet ; 104(2): 203-212, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30612693

RESUMEN

Using exome sequencing, we have identified de novo variants in MAPK8IP3 in 13 unrelated individuals presenting with an overlapping phenotype of mild to severe intellectual disability. The de novo variants comprise six missense variants, three of which are recurrent, and three truncating variants. Brain anomalies such as perisylvian polymicrogyria, cerebral or cerebellar atrophy, and hypoplasia of the corpus callosum were consistent among individuals harboring recurrent de novo missense variants. MAPK8IP3 has been shown to be involved in the retrograde axonal-transport machinery, but many of its specific functions are yet to be elucidated. Using the CRISPR-Cas9 system to target six conserved amino acid positions in Caenorhabditis elegans, we found that two of the six investigated human alterations led to a significantly elevated density of axonal lysosomes, and five variants were associated with adverse locomotion. Reverse-engineering normalized the observed adverse effects back to wild-type levels. Combining genetic, phenotypic, and functional findings, as well as the significant enrichment of de novo variants in MAPK8IP3 within our total cohort of 27,232 individuals who underwent exome sequencing, we implicate de novo variants in MAPK8IP3 as a cause of a neurodevelopmental disorder with intellectual disability and variable brain anomalies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Encéfalo/anomalías , Encéfalo/metabolismo , Discapacidad Intelectual/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Niño , Preescolar , Simulación por Computador , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Locomoción , Lisosomas/metabolismo , Masculino , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Secuenciación del Exoma , Adulto Joven
18.
Am J Med Genet A ; 179(2): 219-223, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30556359

RESUMEN

Kabuki syndrome (KS) is a multiple congenital malformation syndrome which has been described across all ethnic groups. Most KS patients possess two genetic subtypes: KMT2D-associated, autosomal-dominant KS type 1 (KS1; OMIM 147920); and KDM6A-associated, X-linked-dominant KS type 2. Generalized joint hypermobility is one feature of KS, but its exact incidence and pattern is not well described in the literature. As part of our prospective study on the metabolic and growth effect of GH treatment, we assessed children from our Dutch Kabuki cohort who were eligible for growth hormone therapy. We assessed severity and pattern of joint hypermobility, both before and after 24 months of growth hormone replacement therapy. The prevalence of hypermobility was 31% in boys and 14% in girls using the Beighton score and 69% in boys and 57% in girls using the Bulbena score. This varies from the general population where girls are more affected. After 2 years of growth hormone treatment, there was a statistically significant decrease in the presence of joint hypermobility to 6% using the Bulbena score and none with respect to the Beighton score. We hypothesized that this result suggests a direct effect of growth hormone on connective tissue in patients with KS.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Cara/anomalías , Enfermedades Hematológicas/genética , Histona Demetilasas/genética , Inestabilidad de la Articulación/genética , Proteínas de Neoplasias/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/fisiopatología , Adolescente , Niño , Preescolar , Estudios de Cohortes , Bases de Datos Genéticas , Cara/fisiopatología , Femenino , Hormona del Crecimiento/administración & dosificación , Enfermedades Hematológicas/tratamiento farmacológico , Enfermedades Hematológicas/fisiopatología , Humanos , Inestabilidad de la Articulación/tratamiento farmacológico , Inestabilidad de la Articulación/fisiopatología , Masculino , Mutación , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Enfermedades Vestibulares/tratamiento farmacológico , Enfermedades Vestibulares/fisiopatología
19.
Nucl Med Commun ; 39(11): 961-968, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30106798

RESUMEN

In patients with neurofibromatosis type 1, transformation of neurofibromas into a malignant peripheral nerve sheath tumor (MPNST) is a severe complication of the disease. Fluorine-18-fluorodeoxyglucose PET/computed tomography (PET/CT) is a viable option for detecting malignant tumors in neurofibromatosis type 1 patients. The aim of this review was to assess the diagnostic performance of the most frequently used parameters of PET/CT in detecting MPNST. An extensive computer search was performed using the Cochrane Library, Pubmed, and Medline/Embase databases. Two reviewers independently extracted data of relevant studies and assessed the methodological quality (QUADAS-2). The diagnostic performance of PET/CT parameters in individual studies was determined by calculating a diagnostic odds ratio (DOR) using the absolute numbers of true-positive, true-negative, false-positive, and false-negative test results. A total of eight studies were included, of which three evaluated the standardized uptake value as a diagnostic parameter, two assessed the tumor-to-liver (T/L) ratio, and three articles described both parameters. The cut-off values for maximum standardized uptake value (SUVmax) ranged from 3.2 to 4.5; for the T/L ratio, the cut-off values were between 1.0 and 4.3. The sensitivity and specificity ranged from 90 to 100% and from 80 to 100%, respectively (SUVmax). T/L ratios were associated with 92-100% sensitivity and 72-94% specificity. The corresponding DORs ranged from 57 to 145 (SUVmax) and 35 to 655 (T/L ratio). Both the SUV and the T/L ratio are associated with high sensitivity combined with acceptable specificity in detecting MPNST. There is a tendency toward higher DORs using the T/L ratio, but the number of studies is limited.


Asunto(s)
Transformación Celular Neoplásica , Fluorodesoxiglucosa F18 , Neurofibromatosis 1/diagnóstico por imagen , Neurofibromatosis 1/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Humanos
20.
Ann Neurol ; 84(2): 200-207, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30014507

RESUMEN

OBJECTIVE: Developmental delay (DD) with favorable intellectual outcome and mild intellectual disability (ID) are mostly considered to be of complex genetic and environmental origin, but, in fact, often remain unclear. We aimed at proving our assumption that also mild cases of DD and ID may be of monogenic etiology. METHODS: We clinically evaluated 8 individuals and performed exome sequencing or array copy number analysis and identified variants in CUX1 as the likely cause. In addition, we included a case from the public database, DECIPHER. RESULTS: All 9 individuals harbored heterozygous null-allele variants in CUX1, encoding the Cut-homeobox 1 transcription factor that is involved in regulation of dendritogenesis and cortical synapse formation in layer II to IV cortical neurons. Six variants arose de novo, while in one family the variant segregated with ID. Of the 9 included individuals, 2 were diagnosed with moderate ID, 3 with mild ID, and 3 showed a normal age-related intelligence at ages 4, 6, and 8 years after a previous history of significant DD. INTERPRETATION: Our results suggest that null-allele variants, and thus haploinsufficiency of CUX1, cause an isolated phenotype of DD or ID with possible catch-up development. This illustrates that such a developmental course is not necessarily genetic complex, but may also be attributed to a monogenic cause. Ann Neurol 2018;84:200-207.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Haploinsuficiencia/genética , Proteínas de Homeodominio/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Adulto , Niño , Preescolar , Femenino , Variación Genética/genética , Humanos , Masculino , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...