Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(3): e0164321, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35587638

RESUMEN

The study of the mammalian microbiome serves as a critical tool for understanding host-microbial diversity and coevolution and the impact of bacterial communities on host health. While studies of specific microbial systems (e.g., in the human gut) have rapidly increased, large knowledge gaps remain, hindering our understanding of the determinants and levels of variation in microbiomes across multiple body sites and host species. Here, we compare microbiome community compositions from eight distinct body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), representing the largest comparative study of microbial diversity across primate host species and body sites. Analysis of 898 samples predominantly acquired in the wild demonstrated that oral microbiomes were unique in their clustering, with distinctive divergence from all other body site microbiomes. In contrast, all other body site microbiomes clustered principally by host species and differentiated by body site within host species. These results highlight two key findings: (i) the oral microbiome is unique compared to all other body site microbiomes and conserved among diverse nonhuman primates, despite their considerable dietary and phylogenetic differences, and (ii) assessments of the determinants of host-microbial diversity are relative to the level of the comparison (i.e., intra-/inter-body site, -host species, and -individual), emphasizing the need for broader comparative microbial analyses across diverse hosts to further elucidate host-microbial dynamics, evolutionary and biological patterns of variation, and implications for human-microbial coevolution. IMPORTANCE The microbiome is critical to host health and disease, but much remains unknown about the determinants, levels, and evolution of host-microbial diversity. The relationship between hosts and their associated microbes is complex. Most studies to date have focused on the gut microbiome; however, large gaps remain in our understanding of host-microbial diversity, coevolution, and levels of variation in microbiomes across multiple body sites and host species. To better understand the patterns of variation and evolutionary context of host-microbial communities, we conducted one of the largest comparative studies to date, which indicated that the oral microbiome was distinct from the microbiomes of all other body sites and convergent across host species, suggesting conserved niche specialization within the Primates order. We also show the importance of host species differences in shaping the microbiome within specific body sites. This large, comparative study contributes valuable information on key patterns of variation among hosts and body sites, with implications for understanding host-microbial dynamics and human-microbial coevolution.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Mamíferos , Filogenia , Primates/microbiología
3.
mSystems ; 5(6)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33361321

RESUMEN

Compared with urban-industrial populations, small-scale human communities worldwide share a significant number of gut microbiome traits with nonhuman primates. This overlap is thought to be driven by analogous dietary triggers; however, the ecological and functional bases of this similarity are not fully understood. To start addressing this issue, fecal metagenomes of BaAka hunter-gatherers and traditional Bantu agriculturalists from the Central African Republic were profiled and compared with those of a sympatric western lowland gorilla group (Gorilla gorilla gorilla) across two seasons of variable dietary intake. Results show that gorilla gut microbiomes shared similar functional traits with each human group, depending on seasonal dietary behavior. Specifically, parallel microbiome traits were observed between hunter-gatherers and gorillas when the latter consumed more structural polysaccharides during dry seasons, while small-scale agriculturalist and gorilla microbiomes showed significant functional overlap when gorillas consumed more seasonal ripe fruit during wet seasons. Notably, dominance of microbial transporters, transduction systems, and gut xenobiotic metabolism was observed in association with traditional agriculture and energy-dense diets in gorillas at the expense of a functional microbiome repertoire capable of metabolizing more complex polysaccharides. Differential abundance of bacterial taxa that typically distinguish traditional from industrialized human populations (e.g., Prevotella spp.) was also recapitulated in the human and gorilla groups studied, possibly reflecting the degree of polysaccharide complexity included in each group's dietary niche. These results show conserved functional gut microbiome adaptations to analogous diets in small-scale human populations and nonhuman primates, highlighting the role of plant dietary polysaccharides and diverse environmental exposures in this convergence.IMPORTANCE The results of this study highlight parallel gut microbiome traits in human and nonhuman primates, depending on subsistence strategy. Although these similarities have been reported before, the functional and ecological bases of this convergence are not fully understood. Here, we show that this parallelism is, in part, likely modulated by the complexity of plant carbohydrates consumed and by exposures to diverse xenobiotics of natural and artificial origin. Furthermore, we discuss how divergence from these parallel microbiome traits is typically associated with adverse health outcomes in human populations living under culturally westernized subsistence patterns. This is important information as we trace the specific dietary and environmental triggers associated with the loss and gain of microbial functions as humans adapt to various dietary niches.

4.
mSystems ; 5(3)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457237

RESUMEN

Human exploitation and destruction of tropical resources are currently threatening innumerable wild animal species, altering natural ecosystems and thus, food resources, with profound effects on gut microbiota. Given their conservation status and the importance to tropical ecosystems, wild nonhuman primates make excellent models to investigate the effect of human disturbance on the diversity of host-associated microbiota. Previous investigations have revealed a loss of fecal bacterial diversity in primates living in degraded compared to intact forests. However, these data are available for a limited number of species, and very limited information is available on the fungal taxa hosted by the gut. Here, we estimated the diversity and composition of gut bacterial and fungal communities in two primates living sympatrically in both human-modified and pristine forests in the Udzungwa Mountains of Tanzania. Noninvasively collected fecal samples of 12 groups of the Udzungwa red colobus (Procolobus gordonorum) (n = 89), a native and endangered primate (arboreal and predominantly leaf-eating), and five groups of the yellow baboon (Papio cynocephalus) (n = 69), a common species of least concern (ground-feeding and omnivorous), were analyzed by the V1-V3 region of the 16S rRNA gene (bacterial) and ITS1-ITS2 (fungal) sequencing. Gut bacterial diversities were associated with habitat in both species, most likely depending on their ecological niches and associated digestive physiology, dietary strategies, and locomotor behavior. In addition, fungal communities also show distinctive traits across hosts and habitat type, highlighting the importance of investigating this relatively unexplored gut component.IMPORTANCE Gut microbiota diversity has become the subject of extensive research in human and nonhuman animals, linking diversity and composition to gut function and host health. Because wild primates are good indicators of tropical ecosystem health, we developed the idea that they are a suitable model to observe the consequences of advancing global change (e.g., habitat degradation) on gut microbiota. So far, most of the studies focus mainly on gut bacteria; however, they are not the only component of the gut: fungi also serve essential functions in gut homeostasis. Here, for the first time, we explore and measure diversity and composition of both bacterial and fungal microbiota components of two tropical primate species living in highly different habitat types (intact versus degraded forests). Results on their microbiota diversity and composition are discussed in light of conservation issues and potential applications.

5.
ISME J ; 14(2): 609-622, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31719654

RESUMEN

Documenting the natural diversity of eukaryotic organisms in the nonhuman primate (NHP) gut is important for understanding the evolution of the mammalian gut microbiome, its role in digestion, health and disease, and the consequences of anthropogenic change on primate biology and conservation. Despite the ecological significance of gut-associated eukaryotes, little is known about the factors that influence their assembly and diversity in mammals. In this study, we used an 18S rRNA gene fragment metabarcoding approach to assess the eukaryotic assemblage of 62 individuals representing 16 NHP species. We find that cercopithecoids, and especially the cercopithecines, have substantially higher alpha diversity than other NHP groups. Gut-associated protists and nematodes are widespread among NHPs, consistent with their ancient association with NHP hosts. However, we do not find a consistent signal of phylosymbiosis or host-species specificity. Rather, gut eukaryotes are only weakly structured by primate phylogeny with minimal signal from diet, in contrast to previous reports of NHP gut bacteria. The results of this study indicate that gut-associated eukaryotes offer different information than gut-associated bacteria and add to our understanding of the structure of the gut microbiome.


Asunto(s)
Biodiversidad , Microbioma Gastrointestinal , Metagenómica , Primates/microbiología , Primates/parasitología , Animales , Animales Salvajes/microbiología , Animales Salvajes/parasitología , Blastocisto/clasificación , Cercopithecidae/microbiología , Cercopithecidae/parasitología , Cilióforos/clasificación , Cilióforos/genética , Cilióforos/aislamiento & purificación , Dieta , Endolimax/clasificación , Endolimax/genética , Endolimax/aislamiento & purificación , Entamoeba/clasificación , Entamoeba/genética , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/aislamiento & purificación , Heces/microbiología , Heces/parasitología , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hominidae/microbiología , Hominidae/parasitología , Especificidad del Huésped , Lemur/microbiología , Lemur/parasitología , Nematodos/clasificación , Nematodos/genética , Nematodos/aislamiento & purificación , Filogenia , Platirrinos/microbiología , Platirrinos/parasitología
6.
Am J Primatol ; 81(10-11): e23060, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31608486

RESUMEN

Primate microbiome research is a quickly growing field with exciting potential for informing our understanding of primate biology, ecology, and evolution as well as host-microbe interactions more broadly. This introductory essay to a special section of the American Journal of Primatology provides a cross-sectional snapshot of current activity in these areas by briefly summarizing the diversity of contributed papers and their relationships to key themes in host-associated microbiome research. It then uses this survey as a foundation for consolidating a set of key research questions to broadly guide future research. It also argues for the importance of methods standardization to facilitate comparative analyses and the identification of generalizable patterns and relationships. While primatology will benefit greatly from the integration of microbial datasets, it is uniquely positioned to address important questions regarding microbiology and macro-ecology and evolution more generally. We are eager to see where the primate microbiome leads us.


Asunto(s)
Microbiota , Primates/microbiología , Animales , Evolución Biológica , Ecología , Interacciones Microbiota-Huesped
7.
Genome Biol ; 20(1): 201, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31590679

RESUMEN

BACKGROUND: Comparative data from non-human primates provide insight into the processes that shaped the evolution of the human gut microbiome and highlight microbiome traits that differentiate humans from other primates. Here, in an effort to improve our understanding of the human microbiome, we compare gut microbiome composition and functional potential in 14 populations of humans from ten nations and 18 species of wild, non-human primates. RESULTS: Contrary to expectations from host phylogenetics, we find that human gut microbiome composition and functional potential are more similar to those of cercopithecines, a subfamily of Old World monkey, particularly baboons, than to those of African apes. Additionally, our data reveal more inter-individual variation in gut microbiome functional potential within the human species than across other primate species, suggesting that the human gut microbiome may exhibit more plasticity in response to environmental variation compared to that of other primates. CONCLUSIONS: Given similarities of ancestral human habitats and dietary strategies to those of baboons, these findings suggest that convergent ecologies shaped the gut microbiomes of both humans and cercopithecines, perhaps through environmental exposure to microbes, diet, and/or associated physiological adaptations. Increased inter-individual variation in the human microbiome may be associated with human dietary diversity or the ability of humans to inhabit novel environments. Overall, these findings show that diet, ecology, and physiological adaptations are more important than host-microbe co-diversification in shaping the human microbiome, providing a key foundation for comparative analyses of the role of the microbiome in human biology and health.


Asunto(s)
Microbioma Gastrointestinal , Animales , Cercopithecidae/clasificación , Cercopithecidae/genética , Cercopithecidae/microbiología , Dieta , Ecosistema , Hominidae/clasificación , Hominidae/genética , Humanos , Filogenia , ARN Ribosómico 16S/genética
8.
Am J Primatol ; 81(10-11): e23046, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31478232

RESUMEN

Deforestation continues to jeopardize Malagasy primates as viable habitats become smaller, more fragmented, and more disturbed. This deforestation can lead to changes in diet, microhabitat, and gene flow between populations of endangered species, and it remains unclear how these changes may affect gut microbiome (GM) characteristics. The black-and-white ruffed lemur (Varecia variegata), which is among Madagascar's most threatened lemur species, provides a critical model for understanding the relationships between historical and on-going deforestation (habitat disturbance), feeding ecology, and GM composition and diversity. We studied four populations inhabiting two rainforests (relatively pristine vs. highly disturbed) in southeastern Madagascar. We conducted full-day focal animal behavioral follows and collected fecal samples opportunistically across a three-month period. Our results indicate that lemurs inhabiting sites characterized by habitat disturbance and low dietary diversity exhibited reduced gut microbial alpha diversity. We also show that these same factors were associated with high community dissimilarity using weighted and unweighted UniFrac metrics. Finally, an indicator species analysis showed that the most pristine site was characterized by an abundance of methanogenic archaea. While it is impossible to disentangle the relative contributions of each confounding variable presented by our sampling design, these results provide crucial information about GM variability, thereby underscoring the importance of monitoring endangered species at the population-level.


Asunto(s)
Ecosistema , Microbioma Gastrointestinal , Lemuridae/microbiología , Animales , Archaea , Conducta Animal , Biodiversidad , Dieta , Especies en Peligro de Extinción , Heces/microbiología , Conducta Alimentaria , Femenino , Microbioma Gastrointestinal/fisiología , Lemuridae/fisiología , Madagascar , Masculino , Bosque Lluvioso
9.
Am J Primatol ; 81(10-11): e23045, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31471974

RESUMEN

The study of the primate microbiome is critical in understanding the role of the microbial community in the host organism. To be able to isolate the main factors responsible for the differences observed in microbiomes within and between individuals, confounding factors due to technical variations need to be removed. To determine whether alterations due to preservatives outweigh differences due to factors such as host population, host species, body site, and habitat, we tested three methods (no preservative, 96% ethanol, and RNAlater) for preserving wild chimpanzee (fecal), wild lemur (fecal), wild vervet monkey (rectal, oral, nasal, otic, vaginal, and penile), and captive vervet monkey (rectal) samples. All samples were stored below - 20°C (short term) at the end of the field day and then at - 80°C until DNA extraction. Using 16S rRNA gene sequencing, we show a significant preservative effect on microbiota composition and diversity. Samples stored in ethanol and RNAlater appear to be less different compared with samples not stored in any preservative (none). Our differential analysis revealed significantly higher amounts of Enterococcaceae and Family XI in no preservative samples, Prevotellaceae and Spirochaetaceae in ethanol and RNAlater preserved samples, Oligosphaeraceae in ethanol-preserved samples, and Defluviitaleaceae in RNAlater preserved samples. While these preservative effects on the microbiome are not large enough to remove or outweigh the differences arising from biological factors (e.g., host species, body site, and habitat differences) they may promote misleading interpretations if they have large enough effect sizes compared to the biological factors (e.g., host population).


Asunto(s)
Microbiota , Preservación Biológica/métodos , Manejo de Especímenes/veterinaria , Animales , Chlorocebus aethiops/microbiología , Femenino , Interacciones Microbiota-Huesped , Lemur/microbiología , Masculino , Pan troglodytes/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Manejo de Especímenes/métodos
10.
mSphere ; 4(4)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366708

RESUMEN

The gut microbiome of primates, including humans, is reported to closely follow host evolutionary history, with gut microbiome composition being specific to the genetic background of its primate host. However, the comparative models used to date have mainly included a limited set of closely related primates. To further understand the forces that shape the primate gut microbiome, with reference to human populations, we expanded the comparative analysis of variation among gut microbiome compositions and their primate hosts, including 9 different primate species and 4 human groups characterized by a diverse set of subsistence patterns (n = 448 samples). The results show that the taxonomic composition of the human gut microbiome, at the genus level, exhibits increased compositional plasticity. Specifically, we show unexpected similarities between African Old World monkeys that rely on eclectic foraging and human populations engaging in nonindustrial subsistence patterns; these similarities transcend host phylogenetic constraints. Thus, instead of following evolutionary trends that would make their microbiomes more similar to that of conspecifics or more phylogenetically similar apes, gut microbiome composition in humans from nonindustrial populations resembles that of generalist cercopithecine monkeys. We also document that wild cercopithecine monkeys with eclectic diets and humans following nonindustrial subsistence patterns harbor high gut microbiome diversity that is not only higher than that seen in humans engaging in industrialized lifestyles but also higher compared to wild primates that typically consume fiber-rich diets.IMPORTANCE The results of this study indicate a discordance between gut microbiome composition and evolutionary history in primates, calling into question previous notions about host genetic control of the primate gut microbiome. Microbiome similarities between humans consuming nonindustrialized diets and monkeys characterized by subsisting on eclectic, omnivorous diets also raise questions about the ecological and nutritional drivers shaping the human gut microbiome. Moreover, a more detailed understanding of the factors associated with gut microbiome plasticity in primates offers a framework to understand why humans following industrialized lifestyles have deviated from states thought to reflect human evolutionary history. The results also provide perspectives for developing therapeutic dietary manipulations that can reset configurations of the gut microbiome to potentially improve human health.


Asunto(s)
Bacterias/clasificación , Dieta , Evolución Molecular , Microbioma Gastrointestinal , Variación Genética , Primates/microbiología , Animales , Bacterias/aislamiento & purificación , Heces/microbiología , Humanos , Estilo de Vida , Filogenia , ARN Ribosómico 16S/genética
11.
Am J Phys Anthropol ; 169(3): 575-585, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31025322

RESUMEN

OBJECTIVES: Environmental and ecological factors, such as geographic range, anthropogenic pressure, group identity, and feeding behavior are known to influence the gastrointestinal microbiomes of great apes. However, the influence of individual host traits such as age and sex, given specific dietary and social constraints, has been less studied. The objective of this investigation was to determine the associations between an individual's age and sex on the diversity and composition of the gut microbiome in wild western lowland gorillas. MATERIALS AND METHODS: Publicly available 16S rRNA data generated from fecal samples of different groups of Gorilla gorilla gorilla in the Central African Republic were downloaded and bioinformatically processed. The groups analyzed included habituated, partially habituated and unhabituated gorillas, sampled during low fruit (dry, n = 28) and high fruit (wet, n = 82) seasons. Microbial community analyses (alpha and beta diversity and analyses of discriminant taxa), in tandem with network-wide approaches, were used to (a) mine for specific age and sex based differences in gut bacterial community composition and to (b) asses for gut community modularity and bacterial taxa with potential functional roles, in the context of seasonal food variation, and social group affiliation. RESULTS: Both age and sex significantly influenced gut microbiome diversity and composition in wild western lowland gorillas. However, the largest differences were observed between infants and adults in habituated groups and between adults and immature gorillas within all groups, and across dry and wet seasons. Specifically, although adults always showed greater bacterial richness than infants and immature gorillas, network-wide analyses showed higher microbial community complexity and modularity in the infant gorilla gut. Sex-based microbiome differences were not evident among adults, being only detected among immature gorillas. CONCLUSIONS: The results presented point to a dynamic gut microbiome in Gorilla spp., associated with ontogeny and individual development. Of note, the gut microbiomes of breastfeeding infants seemed to reflect early exposure to complex, herbaceous vegetation. Whether increased compositional complexity of the infant gorilla gut microbiome is an adaptive response to an energy-limited diet and an underdeveloped gut needs to be further tested. Overall, age and sex based gut microbiome differences, as shown here, maybe mainly attributed to access to specific feeding sources, and social interactions between individuals within groups.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Gorilla gorilla/microbiología , Gorilla gorilla/fisiología , Envejecimiento/fisiología , Animales , Antropología Física , ADN Bacteriano/análisis , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Masculino , ARN Ribosómico 16S/genética , Factores Sexuales
12.
ISME J ; 13(3): 576-587, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29995839

RESUMEN

Over the past decade several studies have reported that the gut microbiomes of mammals with similar dietary niches exhibit similar compositional and functional traits. However, these studies rely heavily on samples from captive individuals and often confound host phylogeny, gut morphology, and diet. To more explicitly test the influence of host dietary niche on the mammalian gut microbiome we use 16S rRNA gene amplicon sequencing and shotgun metagenomics to compare the gut microbiota of 18 species of wild non-human primates classified as either folivores or closely related non-folivores, evenly distributed throughout the primate order and representing a range of gut morphological specializations. While folivory results in some convergent microbial traits, collectively we show that the influence of host phylogeny on both gut microbial composition and function is much stronger than that of host dietary niche. This pattern does not result from differences in host geographic location or actual dietary intake at the time of sampling, but instead appears to result from differences in host physiology. These findings indicate that mammalian gut microbiome plasticity in response to dietary shifts over both the lifespan of an individual host and the evolutionary history of a given host species is constrained by host physiological evolution. Therefore, the gut microbiome cannot be considered separately from host physiology when describing host nutritional strategies and the emergence of host dietary niches.


Asunto(s)
Evolución Biológica , Microbioma Gastrointestinal/genética , Metagenómica , Primates/microbiología , Primates/fisiología , Animales , Dieta/veterinaria , Filogenia , ARN Ribosómico 16S/genética
13.
Front Microbiol ; 9: 1202, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29963018

RESUMEN

Relationships between gastrointestinal parasites (GIPs) and the gastrointestinal microbiome (GIM) are widely discussed topics across mammalian species due to their possible impact on the host's health. GIPs may change the environment determining alterations in GIM composition. We evaluated the associations between GIP infections and fecal microbiome composition in two habituated and two unhabituated groups of wild western lowland gorillas (Gorilla g. gorilla) from Dzanga Sangha Protected Areas, Central African Republic. We examined 43 fecal samples for GIPs and quantified strongylid nematodes. We characterized fecal microbiome composition through 454 pyrosequencing of the V1-V3 region of the bacterial 16S rRNA gene. Entamoeba spp. infections were associated with significant differences in abundances of bacterial taxa that likely play important roles in nutrition and metabolism for the host, besides being characteristic members of the gorilla gut microbiome. We did not observe any relationships between relative abundances of several bacterial taxa and strongylid egg counts. Based on our findings, we suggest that there is a significant relationship between fecal microbiome and Entamoeba infection in wild gorillas. This study contributes to the overall knowledge about factors involved in modulating GIM communities in great apes.

14.
Am J Primatol ; 80(6): e22867, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29862519

RESUMEN

The mammalian gastrointestinal (GI) tract is home to trillions of bacteria that play a substantial role in host metabolism and immunity. While progress has been made in understanding the role that microbial communities play in human health and disease, much less attention has been given to host-associated microbiomes in nonhuman primates (NHPs). Here we review past and current research exploring the gut microbiome of NHPs. First, we summarize methods for characterization of the NHP gut microbiome. Then we discuss variation in gut microbiome composition and function across different NHP taxa. Finally, we highlight how studying the gut microbiome offers new insights into primate nutrition, physiology, and immune system function, as well as enhances our understanding of primate ecology and evolution. Microbiome approaches are useful tools for studying relevant issues in primate ecology. Further study of the gut microbiome of NHPs will offer new insight into primate ecology and evolution as well as human health.


Asunto(s)
Evolución Biológica , Microbioma Gastrointestinal , Primates/microbiología , Animales , Bacterias/clasificación , Dieta/veterinaria , Ecología , Filogenia , Primates/clasificación , Primates/inmunología , Primates/fisiología
15.
Microbiology (Reading) ; 164(1): 40-44, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29205130

RESUMEN

Exposure to stressors can negatively impact the mammalian gastrointestinal microbiome (GIM). Here, we used 454 pyrosequencing of 16S rRNA bacterial gene amplicons to evaluate the impact of physiological stress, as evidenced by faecal glucocorticoid metabolites (FGCM; ng/g), on the GIM composition of free-ranging western lowland gorillas (Gorilla gorilla gorilla). Although we found no relationship between GIM alpha diversity (H) and FGCM levels, we observed a significant relationship between the relative abundances of particular bacterial taxa and FGCM levels. Specifically, members of the family Anaerolineaceae (ρ=0.4, FDR q=0.01), genus Clostridium cluster XIVb (ρ=0.35, FDR q=0.02) and genus Oscillibacter (ρ=0.35, FDR q=0.02) were positively correlated with FGCM levels. Thus, while exposure to stressors appears to be associated with minor changes in the gorilla GIM, the consequences of these changes are unknown. Our results may have implications for conservation biology as well as for our overall understanding of factors influencing the non-human primate GIM.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal/fisiología , Gorilla gorilla/microbiología , Estrés Fisiológico , Animales , Bacterias/genética , ADN Bacteriano , Heces/química , Heces/microbiología , Glucocorticoides/análisis , Gorilla gorilla/fisiología , Modelos Estadísticos , ARN Ribosómico 16S , Análisis de Secuencia de ADN
16.
J Anim Ecol ; 87(2): 388-399, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29205327

RESUMEN

Vertebrate gut microbiota form a key component of immunity and a dynamic link between an individual and the ecosystem. Microbiota might play a role in social systems as well, because microbes are transmitted during social contact and can affect host behaviour. Combining methods from behavioural and molecular research, we describe the relationship between social dynamics and gut microbiota of a group-living cooperative species of primate, the red-bellied lemur (Eulemur rubriventer). Specifically, we ask whether patterns of social contact (group membership, group size, position in social network, individual sociality) are associated with patterns of gut microbial composition (diversity and similarity) between individuals and across time. Red-bellied lemurs were found to have gut microbiota with slight temporal fluctuations and strong social group-specific composition. Contrary to expectations, individual sociality was negatively associated with gut microbial diversity. However, position within the social network predicted gut microbial composition. These results emphasize the role of the social environment in determining the microbiota of adult animals. Since social transmission of gut microbiota has the potential to enhance immunity, microbiota might have played an escalating role in the evolution of sociality.


Asunto(s)
Conducta Animal/fisiología , Biodiversidad , Evolución Biológica , Microbioma Gastrointestinal/fisiología , Lemur/inmunología , Lemur/microbiología , Conducta Social , Animales , Ecosistema , Microbioma Gastrointestinal/inmunología
18.
Microb Ecol ; 74(1): 250-258, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28124727

RESUMEN

Studies of human and domestic animal models indicate that related individuals and those that spend the most time in physical contact typically have more similar gut microbial communities. However, few studies have examined these factors in wild mammals where complex social dynamics and a variety of interacting environmental factors may impact the patterns observed in controlled systems. Here, we explore the effect of host kinship and time spent in social contact on the gut microbiota of wild, black howler monkeys (Alouatta pigra). Our results indicate that closely related individuals had less similar gut microbial communities than non-related individuals. However, the effect was small. In contrast, as previously reported in baboons and chimpanzees, individuals that spent more time in contact (0 m) and close proximity (0-1 m) had more similar gut microbial communities. This pattern was driven by adult female-adult female dyads, which generally spend more time in social contact than adult male-adult male dyads or adult male-adult female dyads. Relative abundances of individual microbial genera such as Bacteroides, Clostridium, and Streptococcus were also more similar in individuals that spent more time in contact or close proximity. Overall, our data suggest that even in arboreal primates that live in small social groups and spend a relatively low proportion of their time in physical contact, social interactions are associated with variation in gut microbiota composition. Additionally, these results demonstrate that within a given host species, subgroups of individuals may interact with the gut microbiota differently.


Asunto(s)
Alouatta/microbiología , Microbioma Gastrointestinal , Conducta Social , Animales , Femenino , Masculino
19.
Gait Posture ; 52: 140-146, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27912154

RESUMEN

While healthy gait is often characterized as, or assumed to be symmetric, consistent asymmetries often exist. In this study, we test the hypotheses that asymmetries in lower limb function, as measured by ground reaction force characteristics, may be explained by differences in foot orientation or limb dominance. Peak ground reaction force (GRF) measurements, and impulses were obtained for thirty-six healthy subjects with simultaneous kinematic estimates of foot posture. Three gait tasks were performed: subjects walked i) with normal foot orientation, ii) with feet laterally rotated (outward), and iii) with feet aligned in the direction of movement (straight). All subjects reported right limb dominance. Our results indicate that vertical, braking and propulsive GRF components are largely symmetrical, but significant asymmetries exist in the mediolateral peak forces and impulses with higher lateral and lower medially-directed GRF components being generated by the dominant right limbs. While foot orientations used during the different tasks do explain some differences in mediolateral peak forces and impulses, foot orientation did not explain this variation within normal walking. We conclude that limb dominance is a better predictor of asymmetry in force generation than foot posture.


Asunto(s)
Pie/fisiología , Lateralidad Funcional/fisiología , Marcha , Movimiento , Caminata , Adolescente , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Adulto Joven
20.
Am J Primatol ; 78(8): 883-92, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27177345

RESUMEN

The gut microbiota contributes to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of the immune system. The composition of the gut microbiota can change dramatically within and between individuals of a species as a result of diet, age, or habitat. Therefore, understanding the factors determining gut microbiota diversity and composition can contribute to our knowledge of host ecology as well as to conservation efforts. Here we use high-throughput sequencing to describe variation in the gut microbiota of the endangered ring-tailed lemur (Lemur catta) at the Bezà Mahafaly Special Reserve (BMSR) in southwestern Madagascar. Specifically, we measured the diversity and composition of the gut microbiota in relation to social group, age, sex, tooth wear and loss, and habitat disturbance. While we found no significant variation in the diversity of the ring-tailed lemur gut microbiota in response to any variable tested, the taxonomic composition of the gut microbiota was influenced by social group, age, and habitat disturbance. However, effect sizes were small and appear to be driven by the presence or absence of relatively low abundance taxa. These results suggest that habitat disturbance may not impact the lemur gut microbiota as strongly as it impacts the gut microbiota of other primate species, highlighting the importance of distinct host ecological and physiological factors on host-gut microbe relationships. Am. J. Primatol. 78:883-892, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Ecosistema , Microbioma Gastrointestinal , Lemur , Animales , Madagascar , Conducta Social , Desgaste de los Dientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA