Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circ Res ; 131(10): 842-858, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36205127

RESUMEN

BACKGROUND: The arterial pole of the heart is a hotspot for life-threatening forms of congenital heart defects (CHDs). Development of this cardiac region occurs by addition of Second Heart Field (SHF) progenitor cells to the embryonic outflow tract (OFT) and subsequently the base of the ascending aorta and pulmonary trunk. Understanding the cellular and genetic mechanisms driving arterial pole morphogenesis is essential to provide further insights into the cause of CHDs. METHODS: A synergistic combination of bioinformatic analysis and mouse genetics as well as embryo and explant culture experiments were used to dissect the cross-regulatory transcriptional circuitry operating in future subaortic and subpulmonary OFT myocardium. RESULTS: Here, we show that the lipid sensor PPARγ (peroxisome proliferator-activated receptor gamma) is expressed in future subpulmonary myocardium in the inferior wall of the OFT and that PPARγ signaling-related genes display regionalized OFT expression regulated by the transcription factor TBX1 (T-box transcription factor 1). Modulating PPARγ activity in ex vivo cultured embryos treated with a PPARγ agonist or antagonist or deleting Pparγ in cardiac progenitor cells using Mesp1-Cre reveals that Pparγ is required for addition of future subpulmonary myocardium and normal arterial pole development. Additionally, the non-canonical DLK1 (delta-like noncanonical Notch ligand 1)/NOTCH (Notch receptor 1)/HES1 (Hes family bHLH transcription factor 1) pathway negatively regulates Pparγ in future subaortic myocardium in the superior OFT wall. CONCLUSIONS: Together these results identify Pparγ as a regulator of regional transcriptional identity in the developing heart, providing new insights into gene interactions involved in congenital heart defects.


Asunto(s)
Cardiopatías Congénitas , PPAR gamma , Animales , Ratones , Corazón , Cardiopatías Congénitas/genética , Miocardio/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Factores de Transcripción/metabolismo , Receptores Notch/metabolismo
2.
Cardiovasc Res ; 118(12): 2625-2637, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34755840

RESUMEN

AIMS: Promoting cardiomyocyte renewal represents a major therapeutic approach for heart regeneration and repair. Our study aims to investigate the relevance of FGF10 as a potential target for heart regeneration. METHODS AND RESULTS: Our results first reveal that Fgf10 levels are up-regulated in the injured ventricle after MI. Adult mice with reduced Fgf10 expression subjected to MI display impaired cardiomyocyte proliferation and enhanced cardiac fibrosis, leading to a worsened cardiac function and remodelling post-MI. In contrast, conditional Fgf10 overexpression post-MI revealed that, by enhancing cardiomyocyte proliferation and preventing scar-promoting myofibroblast activation, FGF10 preserves cardiac remodelling and function. Moreover, FGF10 activates major regenerative pathways including the regulation of Meis1 expression levels, the Hippo signalling pathway and a pro-glycolytic metabolic switch. Finally, we demonstrate that elevated FGF10 levels in failing human hearts correlate with reduced fibrosis and enhanced cardiomyocyte proliferation. CONCLUSIONS: Altogether, our study shows that FGF10 promotes cardiac regeneration and repair through two cellular mechanisms: elevating cardiomyocyte renewal and limiting fibrosis. This study thus identifies FGF10 as a clinically relevant target for heart regeneration and repair in man.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Animales , Proliferación Celular , Células Cultivadas , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Fibrosis , Humanos , Ratones , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Regeneración
4.
PLoS Genet ; 14(7): e1007502, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29979676

RESUMEN

Left ventricular non-compaction (LVNC) is a rare cardiomyopathy associated with a hypertrabeculated phenotype and a large spectrum of symptoms. It is still unclear whether LVNC results from a defect of ventricular trabeculae development and the mechanistic basis that underlies the varying severity of this pathology is unknown. To investigate these issues, we inactivated the cardiac transcription factor Nkx2-5 in trabecular myocardium at different stages of trabecular morphogenesis using an inducible Cx40-creERT2 allele. Conditional deletion of Nkx2-5 at embryonic stages, during trabecular formation, provokes a severe hypertrabeculated phenotype associated with subendocardial fibrosis and Purkinje fiber hypoplasia. A milder phenotype was observed after Nkx2-5 deletion at fetal stages, during trabecular compaction. A longitudinal study of cardiac function in adult Nkx2-5 conditional mutant mice demonstrates that excessive trabeculation is associated with complex ventricular conduction defects, progressively leading to strain defects, and, in 50% of mutant mice, to heart failure. Progressive impaired cardiac function correlates with conduction and strain defects independently of the degree of hypertrabeculation. Transcriptomic analysis of molecular pathways reflects myocardial remodeling with a larger number of differentially expressed genes in the severe versus mild phenotype and identifies Six1 as being upregulated in hypertrabeculated hearts. Our results provide insights into the etiology of LVNC and link its pathogenicity with compromised trabecular development including compaction defects and ventricular conduction system hypoplasia.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Insuficiencia Cardíaca/genética , Ventrículos Cardíacos/embriología , Proteína Homeótica Nkx-2.5/metabolismo , No Compactación Aislada del Miocardio Ventricular/genética , Morfogénesis/genética , Animales , Modelos Animales de Enfermedad , Femenino , Fibrosis , Perfilación de la Expresión Génica , Ventrículos Cardíacos/patología , Proteína Homeótica Nkx-2.5/genética , Proteínas de Homeodominio/metabolismo , Humanos , No Compactación Aislada del Miocardio Ventricular/complicaciones , No Compactación Aislada del Miocardio Ventricular/diagnóstico , No Compactación Aislada del Miocardio Ventricular/patología , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Ramos Subendocárdicos/patología , Eliminación de Secuencia , Índice de Severidad de la Enfermedad , Regulación hacia Arriba
5.
Hum Mol Genet ; 27(21): 3747-3760, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30016433

RESUMEN

The arterial and venous poles of the mammalian heart are hotspots of congenital heart defects (CHD) such as those observed in 22q11.2 deletion (or DiGeorge) and Holt-Oram syndromes. These regions of the heart are derived from late differentiating cardiac progenitor cells of the Second Heart Field (SHF) located in pharyngeal mesoderm contiguous with the elongating heart tube. The T-box transcription factor Tbx1, encoded by the major 22q11.2 deletion syndrome gene, regulates SHF addition to both cardiac poles from a common progenitor population. Despite the significance of this cellular addition the mechanisms regulating the deployment of common progenitor cells to alternate cardiac poles remain poorly understood. Here we demonstrate that Tbx5, mutated in Holt-Oram syndrome and essential for venous pole development, is activated in Tbx1 expressing cells in the posterior region of the SHF at early stages of heart tube elongation. A subset of the SHF transcriptional program, including Tbx1 expression, is subsequently downregulated in Tbx5 expressing cells, generating a transcriptional boundary between Tbx1-positive arterial pole and Tbx5-positive venous pole progenitor cell populations. We show that normal downregulation of the definitive arterial pole progenitor cell program in the posterior SHF is dependent on both Tbx1 and Tbx5. Furthermore, retinoic acid (RA) signaling is required for Tbx5 activation in Tbx1-positive cells and blocking RA signaling at the time of Tbx5 activation results in atrioventricular septal defects at fetal stages. Our results reveal sequential steps of cardiac progenitor cell patterning and provide mechanistic insights into the origin of common forms of CHD.


Asunto(s)
Anomalías Múltiples/metabolismo , Vasos Coronarios/metabolismo , Síndrome de DiGeorge/metabolismo , Cardiopatías Congénitas/metabolismo , Defectos del Tabique Interatrial/metabolismo , Deformidades Congénitas de las Extremidades Inferiores/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas de Dominio T Box/metabolismo , Tretinoina/metabolismo , Deformidades Congénitas de las Extremidades Superiores/metabolismo , Anomalías Múltiples/genética , Animales , Síndrome de DiGeorge/genética , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Defectos de los Tabiques Cardíacos/genética , Defectos de los Tabiques Cardíacos/metabolismo , Defectos del Tabique Interatrial/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Ratones , Ratones Transgénicos , Deformidades Congénitas de las Extremidades Superiores/genética
6.
Circ Res ; 116(11): 1765-71, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25834185

RESUMEN

RATIONALE: Revascularization of injured, ischemic, and regenerating organs is essential to restore organ function. In the postinfarct heart, however, the mechanisms underlying the formation of new coronary arteries are poorly understood. OBJECTIVE: To study vascular remodeling of coronary arteries after infarction. METHODS AND RESULTS: We performed permanent left coronary ligation on Connexin40-GFP mice expressing green fluorescent protein (GFP) in endothelial cells of coronary arteries but not veins, capillaries, or endocardium. GFP(+) endothelial foci were identified within the endocardium in the infarct zone. These previously undescribed structures, termed endocardial flowers, have a distinct endothelial phenotype (Cx40(+), VEGFR2(+), and endoglin(-)) to the surrounding endocardium (Cx40(-), VEGFR2(-), and endoglin(+)). Endocardial flowers are contiguous with coronary vessels and associated with subendocardial smooth muscle cell accumulation. Genetic lineage tracing reveals extensive endothelial plasticity in the postinfarct heart, showing that endocardial flowers develop by arteriogenesis of Cx40(-) cells and by outgrowth of pre-existing coronary arteries. Finally, endocardial flowers exhibit angiogenic features, including early VEGFR2 expression and active proliferation of adjacent endocardial and smooth muscle cells. CONCLUSIONS: Arterial endothelial foci within the endocardium reveal extensive endothelial cell plasticity in the infarct zone and identify the endocardium as a site of endogenous arteriogenesis and source of endothelial cells to promote vascularization in regenerative strategies.


Asunto(s)
Vasos Coronarios/fisiopatología , Endocardio/fisiopatología , Endotelio Vascular/fisiopatología , Infarto del Miocardio/fisiopatología , Animales , Proliferación Celular , Conexinas/genética , Conexinas/metabolismo , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Endocardio/metabolismo , Endocardio/patología , Endoglina , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Transgénicos , Microscopía Confocal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteína alfa-5 de Unión Comunicante
7.
Cardiovasc Res ; 104(3): 432-42, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25344367

RESUMEN

AIMS: Cardiomyocyte proliferation gradually declines during embryogenesis resulting in severely limited regenerative capacities in the adult heart. Understanding the developmental processes controlling cardiomyocyte proliferation may thus identify new therapeutic targets to modulate the cell-cycle activity of cardiomyocytes in the adult heart. This study aims to determine the mechanism by which fibroblast growth factor 10 (FGF10) controls foetal cardiomyocyte proliferation and to test the hypothesis that FGF10 promotes the proliferative capacity of adult cardiomyocytes. METHODS AND RESULTS: Analysis of Fgf10(-/-) hearts and primary cardiomyocyte cultures reveals that altered ventricular morphology is associated with impaired proliferation of right but not left-ventricular myocytes. Decreased FOXO3 phosphorylation associated with up-regulated p27(kip) (1) levels was observed specifically in the right ventricle of Fgf10(-/-) hearts. In addition, cell-type-specific expression analysis revealed that Fgf10 and its receptor, Fgfr2b, are expressed in cardiomyocytes and not cardiac fibroblasts, consistent with a cell-type autonomous role of FGF10 in regulating regional specific myocyte proliferation in the foetal heart. Furthermore, we demonstrate that in vivo overexpression of Fgf10 in adult mice promotes cardiomyocyte but not cardiac fibroblast cell-cycle re-entry. CONCLUSION: FGF10 regulates regional cardiomyocyte proliferation in the foetal heart through a FOXO3/p27(kip1) pathway. In addition, FGF10 triggers cell-cycle re-entry of adult cardiomyocytes and is thus a potential target for cardiac repair.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/fisiología , Corazón/embriología , Miocitos Cardíacos/fisiología , Animales , Ciclo Celular , Proliferación Celular , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Ratones
8.
PLoS One ; 6(9): e23764, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21912643

RESUMEN

NECDIN belongs to the type II Melanoma Associated Antigen Gene Expression gene family and is located in the Prader-Willi Syndrome (PWS) critical region. Necdin-deficient mice develop symptoms of PWS, including a sensory and motor deficit. However, the mechanisms underlying the motor deficit remain elusive. Here, we show that the genetic ablation of Necdin, whose expression is restricted to post-mitotic neurons in the spinal cord during development, leads to a loss of 31% of specified motoneurons. The increased neuronal loss occurs during the period of naturally-occurring cell death and is not confined to specific pools of motoneurons. To better understand the role of Necdin during the period of programmed cell death of motoneurons we used embryonic spinal cord explants and primary motoneuron cultures from Necdin-deficient mice. Interestingly, while Necdin-deficient motoneurons present the same survival response to neurotrophic factors, we demonstrate that deletion of Necdin leads to an increased susceptibility of motoneurons to neurotrophic factor deprivation. We show that by neutralizing TNFα this increased susceptibility of Necdin-deficient motoneurons to trophic factor deprivation can be reduced to the normal level. We propose that Necdin is implicated through the TNF-receptor 1 pathway in the developmental death of motoneurons.


Asunto(s)
Apoptosis , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Embrión de Mamíferos , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Miembro Posterior/citología , Humanos , Región Lumbosacra/patología , Masculino , Ratones , Mitosis/genética , Actividad Motora/genética , Neuronas Motoras/patología , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patología , Síndrome de Prader-Willi/fisiopatología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/genética , Médula Espinal/citología , Médula Espinal/patología , Factor de Necrosis Tumoral alfa/metabolismo
9.
Hum Mol Genet ; 19(24): 4895-905, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20876615

RESUMEN

The onset of feeding at birth is a vital step for the adaptation of the neonate to extra uterine life. Prader-Willi syndrome (PWS) is a complex neurogenetic disorder caused by the alteration of several imprinted contiguous genes including MAGEL2. PWS presents with various clinical manifestations, including poor suckling behaviour and feeding problems in neonates. Hypothalamic defects have been proposed, but the pathophysiological mechanisms remain poorly understood. Here, we report that a Magel2-deficient mouse with 50% neonatal mortality had an altered onset of suckling activity and subsequent impaired feeding, suggesting a role of MAGEL2 in the suckling deficit seen in PW newborns. The hypothalamus of Magel2 mutant neonates showed a significant reduction in oxytocin (OT). Furthermore, injection of a specific OT receptor antagonist in wild-type neonates recapitulated the feeding deficiency seen in Magel2 mutants, and a single injection of OT, 3-5 h after birth, rescued the phenotype of Magel2 mutant pups, allowing all of them to survive. Our study illustrates the crucial role of feeding onset behaviour after birth. We propose that OT supply might constitute a promising avenue for the treatment of feeding difficulties in PW neonates and potentially of other newborns with impaired feeding onset.


Asunto(s)
Antígenos de Neoplasias/genética , Conducta Alimentaria/efectos de los fármacos , Impresión Genómica/efectos de los fármacos , Oxitocina/administración & dosificación , Oxitocina/farmacología , Proteínas/genética , Animales , Animales Recién Nacidos , Animales Lactantes/metabolismo , Antígenos de Neoplasias/metabolismo , Femenino , Marcación de Gen , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Inmunohistoquímica , Inyecciones Subcutáneas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptidos/metabolismo , Sistemas Neurosecretores/efectos de los fármacos , Sistemas Neurosecretores/fisiología , Orexinas , Fenotipo , Proteínas/metabolismo , Receptores de Oxitocina/antagonistas & inhibidores , Vasopresinas/metabolismo
10.
Dev Biol ; 286(2): 587-600, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16126194

RESUMEN

The mouse ortholog of the Prader-Willi/Angelman syndrome imprinted domain contains several paternal-specific transcripts and the maternally expressed gene encoding ubiquitin protein ligase E3A (Ube3a). A Large paternal Non-Coding RNA, encompassing Snurf-Snrpn exons and the Ube3a Antisense Transcript (Ube3a-ATS), has been recently characterized and named here LNCAT. Potential roles of LNCAT in imprinting, gene regulation, and disease are likely but have not been investigated. In order to establish the function(s) of LNCAT, we first determined its in vivo spatio-temporal expression pattern at the cellular level during development and in different adult brain tissues. We show here that LNCAT is developmentally regulated, with transcript variants being specifically expressed through neuronal differentiation in postmitotic neurons. We demonstrate that the LNCAT and Snurf-Snrpn transcripts are independent although they share common exons. We show an absence of expression of LNCAT through gametogenesis and in early embryo excluding a role of LNCAT in the imprint establishment. We also report a range of observations that challenges the widely accepted model of imprinted gene silencing of Ube3a. Although these last data do not completely exclude that the LNCAT variants including "Ube3a-ATS"exons could repress the paternal allele of Ube3a, they do allow us to propose an alternative and consistent model.


Asunto(s)
Cromosomas de los Mamíferos , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , ARN no Traducido/genética , Animales , Autoantígenos , Embrión de Mamíferos , Ratones , Ratones Endogámicos , Proteínas Nucleares/genética , Síndrome de Prader-Willi , Ribonucleoproteínas Nucleares Pequeñas/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Nucleares snRNP
11.
J Bacteriol ; 185(15): 4298-304, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12867437

RESUMEN

Transcription of the Escherichia coli osmC gene is induced by several stress conditions. osmC is expressed from two overlapping promoters, osmCp1 and osmCp2. The proximal promoter, osmCp2, is transcribed at the entry into the stationary phase by the sigma(s) sigma factor. The distal promoter, osmCp1, is activated by NhaR and RcsB. NhaR is a positive regulator of the LysR family and is known to be an activator of the nhaA gene encoding an Na(+)/H(+) antiporter. RcsB is the response regulator of the RcsCDB His-Asp phosphorelay signal transduction system. Genetic data indicated that activation of osmCp1 by both NhaR and RcsB requires the same short sequences upstream of the -35 region of the promoter. Accordingly, DNase I footprint analysis indicated that both activators protect an overlapping region close to the -35 box of the promoter and suggested that the regulatory effect is direct. Despite the overlap of the binding sites, each activator acts independent of the other and is specific for a particular stress. NhaR can stimulate osmCp1 in response to an osmotic signal even in the absence of RcsB. RcsB is responsible for the induction of osmCp1 by alteration of the cell envelope, even in the absence of NhaR. osmCp1 as an example of multiple-stress-responsive promoter is discussed in light of a comparison of the NhaR and RcsB target regions in the Enterobacteriaceae.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , Huella de ADN , Desoxirribonucleasas/metabolismo , Enterobacteriaceae/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Respuesta al Choque Térmico , Datos de Secuencia Molecular , Alineación de Secuencia , Transactivadores/metabolismo
12.
J Bacteriol ; 184(10): 2850-3, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11976318

RESUMEN

The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.


Asunto(s)
Proteínas Bacterianas/fisiología , Clorpromazina/farmacología , Proteínas de Escherichia coli , Escherichia coli/efectos de los fármacos , Complejos Multienzimáticos/fisiología , Fosfoproteínas Fosfatasas/fisiología , Proteínas Quinasas/fisiología , Factores de Transcripción , Escherichia coli/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...