Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 41(12): 2581-2600, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33547164

RESUMEN

Brainstem median raphe (MR) neurons expressing the serotonergic regulator gene Pet1 send collateralized projections to forebrain regions to modulate affective, memory-related, and circadian behaviors. Some Pet1 neurons express a surprisingly incomplete battery of serotonin pathway genes, with somata lacking transcripts for tryptophan hydroxylase 2 (Tph2) encoding the rate-limiting enzyme for serotonin [5-hydroxytryptamine (5-HT)] synthesis, but abundant for vesicular glutamate transporter type 3 (Vglut3) encoding a synaptic vesicle-associated glutamate transporter. Genetic fate maps show these nonclassical, putatively glutamatergic Pet1 neurons in the MR arise embryonically from the same progenitor cell compartment-hindbrain rhombomere 2 (r2)-as serotonergic TPH2+ MR Pet1 neurons. Well established is the distribution of efferents en masse from r2-derived, Pet1-neurons; unknown is the relationship between these efferent targets and the specific constituent source-neuron subgroups identified as r2-Pet1Tph2-high versus r2-Pet1Vglut3-high Using male and female mice, we found r2-Pet1 axonal boutons segregated anatomically largely by serotonin+ versus VGLUT3+ identity. The former present in the suprachiasmatic nucleus, paraventricular nucleus of the thalamus, and olfactory bulb; the latter are found in the hippocampus, cortex, and septum. Thus r2-Pet1Tph2-high and r2-Pet1Vglut3-high neurons likely regulate distinct brain regions and behaviors. Some r2-Pet1 boutons encased interneuron somata, forming specialized presynaptic "baskets" of VGLUT3+ or VGLUT3+/5-HT+ identity; this suggests that some r2-Pet1Vglut3-high neurons may regulate local networks, perhaps with differential kinetics via glutamate versus serotonin signaling. Fibers from other Pet1 neurons (non-r2-derived) were observed in many of these same baskets, suggesting multifaceted regulation. Collectively, these findings inform brain organization and new circuit nodes for therapeutic considerations.SIGNIFICANCE STATEMENT Our findings match axonal bouton neurochemical identity with distant cell bodies in the brainstem raphe. The results are significant because they suggest that disparate neuronal subsystems derive from Pet1+ precursor cells of the embryonic progenitor compartment rhombomere 2 (r2). Of these r2-Pet1 neuronal subsystems, one appears largely serotonergic, as expected given expression of the serotonergic regulator PET1, and projects to the olfactory bulb, thalamus, and suprachiasmatic nucleus. Another expresses VGLUT3, suggesting principally glutamate transmission, and projects to the hippocampus, septum, and cortex. Some r2-Pet1 boutons-those that are VGLUT3+ or VGLUT3+/5-HT+ co-positive-comprise "baskets" encasing interneurons, suggesting that they control local networks perhaps with differential kinetics via glutamate versus serotonin signaling. Results inform brain organization and circuit nodes for therapeutic consideration.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Química Encefálica/fisiología , Núcleos del Rafe/metabolismo , Rombencéfalo/metabolismo , Serotonina/metabolismo , Factores de Transcripción/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/análisis , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleos del Rafe/química , Rombencéfalo/química , Serotonina/análisis , Factores de Transcripción/análisis
2.
Elife ; 92020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32568072

RESUMEN

Among the brainstem raphe nuclei, the dorsal raphe nucleus (DR) contains the greatest number of Pet1-lineage neurons, a predominantly serotonergic group distributed throughout DR subdomains. These neurons collectively regulate diverse physiology and behavior and are often therapeutically targeted to treat affective disorders. Characterizing Pet1 neuron molecular heterogeneity and relating it to anatomy is vital for understanding DR functional organization, with potential to inform therapeutic separability. Here we use high-throughput and DR subdomain-targeted single-cell transcriptomics and intersectional genetic tools to map molecular and anatomical diversity of DR-Pet1 neurons. We describe up to fourteen neuron subtypes, many showing biased cell body distributions across the DR. We further show that P2ry1-Pet1 DR neurons - the most molecularly distinct subtype - possess unique efferent projections and electrophysiological properties. These data complement and extend previous DR characterizations, combining intersectional genetics with multiple transcriptomic modalities to achieve fine-scale molecular and anatomic identification of Pet1 neuron subtypes.


Asunto(s)
Núcleo Dorsal del Rafe/anatomía & histología , Ratones/anatomía & histología , Ratones/genética , Neuronas , Transcriptoma , Animales , Núcleo Dorsal del Rafe/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
3.
Development ; 145(17)2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30093551

RESUMEN

Mutation in minor spliceosome components is linked to the developmental disorder microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Here, we inactivated the minor spliceosome in the developing mouse cortex (pallium) by ablating Rnu11, which encodes the crucial minor spliceosome small nuclear RNA (snRNA) U11. Rnu11 conditional knockout mice were born with microcephaly, which was caused by the death of self-amplifying radial glial cells (RGCs), while intermediate progenitor cells and neurons were produced. RNA sequencing suggested that this cell death was mediated by upregulation of p53 (Trp53 - Mouse Genome Informatics) and DNA damage, which were both observed specifically in U11-null RGCs. Moreover, U11 loss caused elevated minor intron retention in genes regulating the cell cycle, which was consistent with fewer RGCs in S-phase and cytokinesis, alongside prolonged metaphase in RGCs. In all, we found that self-amplifying RGCs are the cell type most sensitive to loss of minor splicing. Together, these findings provide a potential explanation of how disruption of minor splicing might cause microcephaly in MOPD1.


Asunto(s)
Ciclo Celular/genética , Muerte Celular/fisiología , Enanismo/genética , Células Ependimogliales/metabolismo , Retardo del Crecimiento Fetal/genética , Microcefalia/genética , Células-Madre Neurales/citología , Osteocondrodisplasias/genética , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , Empalmosomas/genética , Animales , Secuencia de Bases , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Empalmosomas/metabolismo , Proteína p53 Supresora de Tumor/biosíntesis
4.
Dev Neurobiol ; 75(9): 895-907, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25492806

RESUMEN

In eukaryotes, gene expression requires splicing, which starts with the identification of exon-intron boundaries by the small, nuclear RNA (snRNAs) of the spliceosome, aided by associated proteins. In the mammalian genome, <1% of introns lack canonical exon-intron boundary sequences and cannot be spliced by the canonical splicing machinery. These introns are spliced by the minor spliceosome, consisting of unique snRNAs (U11, U12, U4atac, and U6atac). The importance of the minor spliceosome is underscored by the disease microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1), which is caused by mutation in U4atac. Thus, it is important to understand the expression and function of the minor spliceosome and its targets in mammalian development, for which we used the mouse as our model. Here, we report enrichment of the minor snRNAs in the developing head/central nervous system (CNS) between E9.5 and E12.5, along with enrichment of these snRNAs in differentiating retinal neurons. Moreover, dynamic expression kinetics of minor intron-containing genes (MIGs) was observed across retinal development. DAVID analysis of MIGs that were cotranscriptionally upregulated embryonically revealed enrichment for RNA metabolism and cell cycle regulation. In contrast, MIGs that were cotranscriptionally upregulated postnatally revealed enrichment for protein localization/transport, vesicle-mediated transport, and calcium transport. Finally, we used U12 morpholino to inactivate the minor spliceosome in the postnatal retina, which resulted in apoptosis of differentiating retinal neurons. Taken together, our data suggest that the minor spliceosome may have distinct functions in embryonic versus postnatal development. Importantly, we show that the minor spliceosome is crucial for the survival of terminally differentiating retinal neurons.


Asunto(s)
Neurogénesis , ARN Nuclear Pequeño/metabolismo , Retina/embriología , Retina/metabolismo , Neuronas Retinianas/fisiología , Empalmosomas/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Supervivencia Celular/fisiología , Electroporación , Humanos , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Ratones , Análisis por Micromatrices , Microscopía Confocal , Microscopía Fluorescente , Morfolinos , Neuronas Retinianas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA