Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(9): 107691, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159814

RESUMEN

The triggering receptor expressed on myeloid cells-2 (TREM2), a pivotal innate immune receptor, orchestrates functions such as inflammatory responses, phagocytosis, cell survival, and neuroprotection. TREM2 variants R47H and R62H have been associated with Alzheimer's disease, yet the underlying mechanisms remain elusive. Our previous research established that TREM2 binds to heparan sulfate (HS) and variants R47H and R62H exhibit reduced affinity for HS. Building upon this groundwork, our current study delves into the interplay between TREM2 and HS and its impact on microglial function. We confirm TREM2's binding to cell surface HS and demonstrate that TREM2 interacts with HS, forming HS-TREM2 binary complexes on microglia cell surfaces. Employing various biochemical techniques, including surface plasmon resonance, low molecular weight HS microarray screening, and serial HS mutant cell surface binding assays, we demonstrate TREM2's robust affinity for HS, and the effective binding requires a minimum HS size of approximately 10 saccharide units. Notably, TREM2 selectively binds specific HS structures, with 6-O-sulfation and, to a lesser extent, the iduronic acid residue playing crucial roles. N-sulfation and 2-O-sulfation are dispensable for this interaction. Furthermore, we reveal that 6-O-sulfation is essential for HS-TREM2 ternary complex formation on the microglial cell surface, and HS and its 6-O-sulfation are necessary for TREM2-mediated ApoE3 uptake in microglia. By delineating the interaction between HS and TREM2 on the microglial cell surface and demonstrating its role in facilitating TREM2-mediated ApoE uptake by microglia, our findings provide valuable insights that can inform targeted interventions for modulating microglial functions in Alzheimer's disease.

2.
J Affect Disord ; 363: 348-357, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029697

RESUMEN

BACKGROUND: A relatively small number of studies have researched the relationship between sleep duration and suicidal ideation, attempts, and behavior. This research aims to investigate the link between sleep duration and suicide in Chinese adolescents, and to examine the role of depression as a mediating factor. METHOD: Data were collected from 3315 students using a multi-stage random cluster sampling method and self-administered questionnaires. The study applied logistic regression to investigate the relationship between sleep duration and various forms of suicidal behavior, and mediation analysis to understand how depression might influence this relationship. RESULTS: The average sleep duration among the adolescents was 7.25 h (±0.20), with 59.67 % reporting insufficient sleep. The logistic regression analysis showed that longer sleep duration is linked with lower risks of suicidal ideation (OR: 0.753, 95%CI: 0.696 to 0.814), suicidal attempts (OR: 0.830, 95%CI: 0.748 to 0.922), and suicidal behavior (OR: 0.841, 95%CI: 0.713 to 0.992). Analysis using restricted cubic spline plots indicated the connection between sleep duration and these suicidal factors was not linear. The study found that depression plays a partial mediating role between sleep duration and suicidal ideation, with an effect of 52.29 %. LIMITATIONS: The cross-sectional study design could not prove causation. CONCLUSIONS: There is a clear non-linear association between sleep duration and suicidal tendencies in adolescents, with depression acting as a mediator. This suggests that future research could focus on sleep and mood management as ways to address suicide risk in this age group.


Asunto(s)
Depresión , Sueño , Ideación Suicida , Intento de Suicidio , Humanos , Adolescente , Masculino , Femenino , Intento de Suicidio/estadística & datos numéricos , Intento de Suicidio/psicología , China/epidemiología , Depresión/psicología , Depresión/epidemiología , Encuestas y Cuestionarios , Factores de Riesgo , Modelos Logísticos , Conducta del Adolescente/psicología , Estudios Transversales , Factores de Tiempo , Duración del Sueño , Pueblos del Este de Asia
3.
Glycobiology ; 34(7)2024 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-38836441

RESUMEN

Heparan sulfate (HS), a sulfated polysaccharide abundant in the extracellular matrix, plays pivotal roles in various physiological and pathological processes by interacting with proteins. Investigating the binding selectivity of HS oligosaccharides to target proteins is essential, but the exhaustive inclusion of all possible oligosaccharides in microarray experiments is impractical. To address this challenge, we present a hybrid pipeline that integrates microarray and in silico techniques to design oligosaccharides with desired protein affinity. Using fibroblast growth factor 2 (FGF2) as a model protein, we assembled an in-house dataset of HS oligosaccharides on microarrays and developed two structural representations: a standard representation with all atoms explicit and a simplified representation with disaccharide units as "quasi-atoms." Predictive Quantitative Structure-Activity Relationship (QSAR) models for FGF2 affinity were developed using the Random Forest (RF) algorithm. The resulting models, considering the applicability domain, demonstrated high predictivity, with a correct classification rate of 0.81-0.80 and improved positive predictive values (PPV) up to 0.95. Virtual screening of 40 new oligosaccharides using the simplified model identified 15 computational hits, 11 of which were experimentally validated for high FGF2 affinity. This hybrid approach marks a significant step toward the targeted design of oligosaccharides with desired protein interactions, providing a foundation for broader applications in glycobiology.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Heparitina Sulfato , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Relación Estructura-Actividad Cuantitativa , Análisis por Micromatrices , Oligosacáridos/química , Oligosacáridos/metabolismo , Unión Proteica , Humanos , Modelos Moleculares
5.
Matrix Biol ; 129: 15-28, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548090

RESUMEN

Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in resorption of bone matrix. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS regulates the biological functions of CtsK, remains largely unknown. In this report, we discovered that HS is a multifaceted regulator of the structure and function of CtsK. Structurally, HS forms a highly stable complex with CtsK and induces its dimerization. Co-crystal structures of CtsK with bound HS oligosaccharides reveal the location of the HS binding site and suggest how HS may support dimerization. Functionally, HS plays a dual role in regulating the enzymatic activity of CtsK. While it preserves the peptidase activity of CtsK by stabilizing its active conformation, it inhibits the collagenase activity of CtsK in a sulfation level-dependent manner. These opposing effects can be explained by our finding that the HS binding site is remote from the active site, which allows HS to specifically inhibit the collagenase activity without affecting the peptidase activity. At last, we show that structurally defined HS oligosaccharides effectively block osteoclast resorption of bone in vitro without inhibiting osteoclast differentiation, which suggests that HS-based oligosaccharide might be explored as a new class of selective CtsK inhibitor for many diseases involving exaggerated bone resorption.


Asunto(s)
Catepsina K , Colagenasas , Heparitina Sulfato , Osteoclastos , Catepsina K/metabolismo , Catepsina K/antagonistas & inhibidores , Catepsina K/química , Catepsina K/genética , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química , Colagenasas/metabolismo , Humanos , Animales , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Sitios de Unión , Ratones , Cristalografía por Rayos X , Resorción Ósea/metabolismo , Resorción Ósea/tratamiento farmacológico , Unión Proteica , Dominio Catalítico , Modelos Moleculares , Multimerización de Proteína
6.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260317

RESUMEN

Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in bone remodeling. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS ultimately regulates the biological functions of CtsK, remains largely unknown. In this report, we determined that CtsK preferably binds to larger HS oligosaccharides, such as dodecasaccharides (12mer), and that the12mer can induce monomeric CtsK to form a stable dimer in solution. Interestingly, while HS has no effect on the peptidase activity of CtsK, it greatly inhibits the collagenase activity of CtsK in a manner dependent on sulfation level. By forming a complex with CtsK, HS was able to preserve the full peptidase activity of CtsK for prolonged periods, likely by stabilizing its active conformation. Crystal structures of Ctsk with a bound 12mer, alone and in the presence of the endogenous inhibitor cystatin-C reveal the location of HS binding is remote from the active site. Mutagenesis based on these complex structures identified 6 basic residues of Ctsk that play essential roles in mediating HS-binding. At last, we show that HS 12mers can effectively block osteoclast resorption of bone in vitro. Combined, we have shown that HS can function as a multifaceted regulator of CtsK and that HS-based oligosaccharide might be explored as a new class of selective CtsK inhibitor in many diseases that involve exaggerated bone resorption.

7.
Glycobiology ; 34(2)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995272

RESUMEN

Despite the recent progress on the solution-phase enzymatic synthesis of heparan sulfate (HS) and chondroitin sulfate (CS), solid-phase enzymatic synthesis has not been fully investigated. Here, we describe the solid-phase enzymatic synthesis of HS and CS backbone oligosaccharides using specialized linkers. We demonstrate the use of immobilized HS linker to synthesize CS, and the use of immobilized CS linker to synthesize HS. The linkers were then digested with chondroitin ABCase and heparin lyases, respectively, to obtain the products. Our findings uncover a potential approach for accelerating the synthesis of structurally homogeneous HS and CS oligosaccharides.


Asunto(s)
Sulfatos de Condroitina , Heparitina Sulfato , Liasa de Heparina , Oligosacáridos
8.
Matrix Biol ; 121: 194-216, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37402431

RESUMEN

Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.


Asunto(s)
Carcinoma , Sulfatos , Niño , Humanos , Comunicación Paracrina , Heparitina Sulfato/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo
9.
Nat Chem ; 15(8): 1108-1117, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37349377

RESUMEN

Glycosaminoglycans (GAGs) are abundant, ubiquitous carbohydrates in biology, yet their structural complexity has limited an understanding of their biological roles and structure-function relationships. Synthetic access to large collections of well defined, structurally diverse GAG oligosaccharides would provide critical insights into this important class of biomolecules and represent a major advance in glycoscience. Here we report a new platform for synthesizing large heparan sulfate (HS) oligosaccharide libraries displaying comprehensive arrays of sulfation patterns. Library synthesis is made possible by improving the overall synthetic efficiency through universal building blocks derived from natural heparin and a traceless fluorous tagging method for rapid purification with minimal manual manipulation. Using this approach, we generated a complete library of 64 HS oligosaccharides displaying all possible 2-O-, 6-O- and N-sulfation sequences in the tetrasaccharide GlcN-IdoA-GlcN-IdoA. These diverse structures provide an unprecedented view into the sulfation code of GAGs and identify sequences for modulating the activities of important growth factors and chemokines.


Asunto(s)
Glicosaminoglicanos , Heparitina Sulfato , Glicosaminoglicanos/química , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Oligosacáridos/química
10.
Sci Adv ; 9(21): eadf6232, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235665

RESUMEN

HS3ST1 is a genetic risk gene associated with Alzheimer's disease (AD) and overexpressed in patients, but how it contributes to the disease progression is unknown. We report the analysis of brain heparan sulfate (HS) from AD and other tauopathies using a LC-MS/MS method. A specific 3-O-sulfated HS displayed sevenfold increase in the AD group (n = 14, P < 0.0005). Analysis of the HS modified by recombinant sulfotransferases and HS from genetic knockout mice revealed that the specific 3-O-sulfated HS is made by 3-O-sulfotransferase isoform 1 (3-OST-1), which is encoded by the HS3ST1 gene. A synthetic tetradecasaccharide (14-mer) carrying the specific 3-O-sulfated domain displayed stronger inhibition for tau internalization than a 14-mer without the domain, suggesting that the 3-O-sulfated HS is used in tau cellular uptake. Our findings suggest that the overexpression of HS3ST1 gene may enhance the spread of tau pathology, uncovering a previously unidentified therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/genética , Cromatografía Liquida , Sulfatos , Espectrometría de Masas en Tándem , Heparitina Sulfato , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Ratones Noqueados , Encéfalo/metabolismo
11.
Angew Chem Int Ed Engl ; 62(23): e202212636, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37014788

RESUMEN

Apolipoprotein E (ApoE)'s ϵ4 alle is the most important genetic risk factor for late onset Alzheimer's Disease (AD). Cell-surface heparan sulfate (HS) is a cofactor for ApoE/LRP1 interaction and the prion-like spread of tau pathology between cells. 3-O-sulfo (3-O-S) modification of HS has been linked to AD through its interaction with tau, and enhanced levels of 3-O-sulfated HS and 3-O-sulfotransferases in the AD brain. In this study, we characterized ApoE/HS interactions in wildtype ApoE3, AD-linked ApoE4, and AD-protective ApoE2 and ApoE3-Christchurch. Glycan microarray and SPR assays revealed that all ApoE isoforms recognized 3-O-S. NMR titration localized ApoE/3-O-S binding to the vicinity of the canonical HS binding motif. In cells, the knockout of HS3ST1-a major 3-O sulfotransferase-reduced cell surface binding and uptake of ApoE. 3-O-S is thus recognized by both tau and ApoE, suggesting that the interplay between 3-O-sulfated HS, tau and ApoE isoforms may modulate AD risk.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/química , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Heparitina Sulfato/química , Isoformas de Proteínas/metabolismo
12.
Glycobiology ; 33(5): 384-395, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37052463

RESUMEN

Sulf-2 is an extracellular heparan 6-O-endosulfatase involved in the postsynthetic editing of heparan sulfate (HS), which regulates many important biological processes. The activity of the Sulf-2 and its substrate specificity remain insufficiently characterized in spite of more than two decades of studies of this enzyme. This is due, in part, to the difficulties in the production and isolation of this highly modified protein and due to the lack of well-characterized synthetic substrates for the probing of its catalytic activity. We introduce synthetic HS oligosaccharides to fill this gap, and we use our recombinant Sulf-2 protein to show that a paranitrophenol (pNP)-labeled synthetic oligosaccharide allows a reliable quantification of its enzymatic activity. The substrate and products of the desulfation reaction are separated by ion exchange high-pressure liquid chromatography and quantified by UV absorbance. This simple assay allows the detection of the Sulf-2 activity at high sensitivity (nanograms of the enzyme) and specificity. The method also allowed us to measure the heparan 6-O-endosulfatase activity in biological samples as complex as the secretome of cancer cell lines. Our in vitro measurements show that the N-glycosylation of the Sulf-2 enzyme affects the activity of the enzyme and that phosphate ions substantially decrease the Sulf-2 enzymatic activity. This assay offers an efficient, sensitive, and specific measurement of the heparan 6-O-endosulfatase activity that could open avenues to in vivo activity measurements and improve our understanding of the enzymatic editing of the sulfation of heparan.


Asunto(s)
Heparitina Sulfato , Oligosacáridos , Heparitina Sulfato/química , Línea Celular , Proteínas Recombinantes/metabolismo , Glicosaminoglicanos , Sulfotransferasas/metabolismo
13.
Angew Chem Int Ed Engl ; 62(1): e202211985, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36173931

RESUMEN

Heparan sulfate (HS) has multifaceted biological activities. To date, no libraries of HS oligosaccharides bearing systematically varied sulfation structures are available owing to the challenges in synthesizing a large number of HS oligosaccharides. To overcome the obstacles and expedite the synthesis, a divergent approach was designed, where 64 HS tetrasaccharides covering all possible structures of 2-O-, 6-O- and N-sulfation with the glucosamine-glucuronic acid-glucosamine-iduronic acid backbone were successfully produced from a single strategically protected tetrasaccharide intermediate. This extensive library helped identify the structural requirements for HS sequences to have strong fibroblast growth factor-2 binding but a weak affinity for platelet factor-4. Such a strategy to separate out these two interactions could lead to new HS-based potential therapeutics without the dangerous adverse effect of heparin-induced thrombocytopenia.


Asunto(s)
Heparitina Sulfato , Oligosacáridos , Oligosacáridos/química , Heparitina Sulfato/química , Unión Proteica , Ácido Glucurónico/metabolismo , Glucosamina
14.
BMC Mol Cell Biol ; 23(1): 61, 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36564747

RESUMEN

BACKGROUND: Considering the high correlation between the functional decline in Alzheimer's disease (AD) and the propagation of aggregated tau protein, many research efforts are focused on determining the underlying molecular mechanisms of tau spreading. Heparan sulfate proteoglycans (HSPGs) were reported to mediate cellular uptake of tau aggregates. Specifically, the heparan sulfates (HS) sulfation plays a critical role in the interaction of HSPGs with aggregated tau. HS can be N-/2-O/6-O- or 3-O-sulfated, some of which have been reported to take part in the interaction with tau aggregates. However, the role of the 3-O sulfation remains enigmatic. RESULTS: Here, we studied the contribution of HS 3-O sulfation in the binding and cellular uptake of tau aggregates. We observed reduced tau aggregates uptake in absence of 3-O sulfation or when outcompeting available cellular 3-O sulfated HS (3S-HS) with antithrombin III. The lack of HS3ST1-generated HS products in the HS3ST1-/- cells was further corroborated with an LC-MS/MS using 13C-labeled HS calibrants. Here, we showed that these functional changes can be explained by a higher affinity of aggregated tau to 3S-HS. When targeting tau aggregates with 3-O sulfation-containing HS, we observed an increase in inhibition of tau aggregates uptake. CONCLUSIONS: These data indicate that HS 3-O sulfation plays a role in the binding of tau aggregates and, thus, contributes to their cellular uptake, highlighting a potential target value to modulate tau pathogenesis.


Asunto(s)
Proteoglicanos de Heparán Sulfato , Proteínas tau , Proteoglicanos de Heparán Sulfato/metabolismo , Proteínas tau/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacología
15.
Front Mol Biosci ; 9: 1043713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419932

RESUMEN

Literature has well-established the importance of 3-O-sulfation of neuronal cell surface glycan heparan sulfate (HS) to its interaction with herpes simplex virus type 1 glycoprotein D (gD). Previous investigations of gD to its viral receptors HVEM and nectin-1 also highlighted the conformational dynamics of gD's N- and C-termini, necessary for viral membrane fusion. However, little is known on the structural interactions of gD with HS. Here, we present our findings on this interface from both the glycan and the protein perspective. We used C-terminal and N-terminal gD variants to probe the role of their respective regions in gD/HS binding. The N-terminal truncation mutants (with Δ1-22) demonstrate equivalent or stronger binding to heparin than their intact glycoproteins, indicating that the first 22 amino acids are disposable for heparin binding. Characterization of the conformational differences between C-terminal truncated mutants by sedimentation velocity analytical ultracentrifugation distinguished between the "open" and "closed" conformations of the glycoprotein D, highlighting the region's modulation of receptor binding. From the glycan perspective, we investigated gD interacting with heparin, heparan sulfate, and other de-sulfated and chemically defined oligosaccharides using surface plasmon resonance and glycan microarray. The results show a strong preference of gD for 6-O-sulfate, with 2-O-sulfation becoming more important in the presence of 6-O-S. Additionally, 3-O-sulfation shifted the chain length preference of gD from longer chain to mid-chain length, reaffirming the sulfation site's importance to the gD/HS interface. Our results shed new light on the molecular details of one of seven known protein-glycan interactions with 3-O-sulfated heparan sulfate.

16.
Org Chem Front ; 9(11): 2910-2920, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-36212917

RESUMEN

Heparan sulfate (HS) regulates a wide range of biological events, including blood coagulation, cancer development, cell differentiation, and viral infections. It is generally recognized that structures of HS can critically impact its biological functions. However, with complex structures of naturally existing HS, systematic investigations into the structure-activity relationship (SAR) of HS and efforts to unlock their "sulfation code" have been largely limited due to the challenges in preparing diverse HS oligosaccharide sequences. Herein, we report an automated machine-aided solid-phase strategy that significantly expedited the assembly of HS disaccharides. The key strategically protected advanced disaccharide intermediates were immobilized onto Synphase lanterns. Divergent deprotections and sulfations of the disaccharides were achieved on the lanterns in high yields. In addition, the full synthetic process was automated, enabling the reproducible production of HS disaccharides. A library of 16 HS disaccharides with diverse sulfation patterns was prepared via this method. Compared to the traditional HS synthesis, this new strategy led to a reduction of 50% of the number of synthetic steps and over 80% of the number of column purification steps needed from the disaccharide intermediates, significantly improving the overall synthetic efficiency. The potential utility of the method was highlighted in a microarray study using the synthetic HS disaccharide library with fibroblast growth factor-2 (FGF-2), which yielded insights into the SAR of HS/FGF-2 interactions.

17.
ACS Chem Biol ; 17(5): 1207-1214, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35420777

RESUMEN

Heparan sulfate (HS) and chondroitin sulfate (CS) are two structurally distinct natural polysaccharides. Here, we report the synthesis of a library of seven structurally homogeneous HS and CS chimeric dodecasaccharides (12-mers). The synthesis was accomplished using six HS biosynthetic enzymes and four CS biosynthetic enzymes. The chimeras contain a CS domain on the reducing end and a HS domain on the nonreducing end. The synthesized chimeras display anticoagulant activity as measured by both in vitro and ex vivo experiments. Furthermore, the anticoagulant activity of H/C 12-mer 5 is reversible by protamine, a U.S. Food and Drug Administration-approved polypeptide to neutralize anticoagulant drug heparin. Our findings demonstrate the synthesis of unnatural HS-CS chimeric oligosaccharides using natural biosynthetic enzymes, offering a new class of glycan molecules for biological research.


Asunto(s)
Sulfatos de Condroitina , Sulfotransferasas , Anticoagulantes , Quimera , Sulfatos de Condroitina/química , Heparitina Sulfato/química , Sulfotransferasas/química
18.
ACS Chem Biol ; 16(10): 2026-2035, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34351732

RESUMEN

Heparan sulfate (HS) 3-O-sulfotransferase isoform 4 (3-OST-4) is a specialized carbohydrate sulfotransferase participating in the biosynthesis of heparan sulfate. Here, we report the expression and purification of the recombinant 3-OST-4 enzyme and use it for the synthesis of a library of 3-O-sulfated hexasaccharides and 3-O-sulfated octasaccharides. The unique structural feature of the library is that each oligosaccharide contains a disaccharide domain with a 2-O-sulfated glucuronic acid (GlcA2S) and 3-O-sulfated glucosamine (GlcNS3S). By rearranging the order of the enzymatic modification steps, we demonstrate the synthesis of oligosaccharides with different saccharide sequences. The structural characterization was completed by electrospray ionization mass spectrometry and NMR. These 3-O-sulfated oligosaccharides show weak to very weak anti-Factor Xa activity, a measurement of anticoagulant activity. We discovered that HSoligo 7 (HS oligosaccharide 7), a 3-O-sulfated octasaccharide, binds to high mobility group box 1 protein (HMGB1) and tau protein, both believed to be involved in the process of inflammation. Access to the recombinant 3-OST-4 expands the capability of the chemoenzymatic method to synthesize novel 3-O-sulfated oligosaccharides. The oligosaccharides will become valuable reagents to probe the biological functions of 3-O-sulfated HS and to develop HS-based therapeutic agents.


Asunto(s)
Oligosacáridos/síntesis química , Sulfotransferasas/química , Animales , Secuencia de Carbohidratos , Factor Xa/metabolismo , Inhibidores del Factor Xa/síntesis química , Inhibidores del Factor Xa/metabolismo , Proteína HMGB1/metabolismo , Isoenzimas/química , Ratones , Oligosacáridos/metabolismo , Proteínas Recombinantes/química , Células Sf9 , Proteínas tau/metabolismo
19.
Anal Chem ; 93(32): 11191-11199, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34355888

RESUMEN

Heparan sulfates (HSs) are widely expressed glycans in the animal kingdom. HS plays a role in regulating cell differentiation/proliferation, embryonic development, blood coagulation, inflammatory response, and viral infection. The amount of HS and its structural information are critically important for investigating the functions of HS in vivo. A sensitive and reliable quantitative technique for the analysis of HS from biological samples is under development. Here, we report a new labeling reagent for HS disaccharides analysis, 6-amino-N-(2-diethylamino)ethyl quinoline-2-carboamide (AMQC). The AMQC-conjugated disaccharides are analyzed by LC-MS/MS in positive mode, significantly improving the sensitivity. The use of AMQC coupled with authentic 13C-labeled HS disaccharide internal standards empowered us to determine the amount and the disaccharide composition of the HS on a single histological slide. We used this method to profile the levels of HS in the plasma/serum and tissues/organs to assist the disease prognosis in two animal models, including the acetaminophen (APAP)-induced acute liver injury mouse model and the burn injury mouse model. The method may uncover the roles of HS contributing to the diseases as well as provide a potential new set of biomarkers for disease diagnosis and prognosis.


Asunto(s)
Heparitina Sulfato , Espectrometría de Masas en Tándem , Animales , Biomarcadores , Cromatografía Liquida , Disacáridos , Ratones
20.
Biomaterials ; 276: 121011, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34303154

RESUMEN

Despite the potential of anti-thrombogenic coatings, including heparinized surfaces, to improve the performance of blood-contacting devices, the inevitable deterioration of bioactivity remains an important factor in device failure and related thrombotic complications. As a consequence, the ability to restore the bioactivity of a surface coating after implantation of a blood-contacting device provides a potentially important strategy to enhance its clinical performance. Here, we report the regeneration of a multicomponent anti-thrombogenic coating through use of an evolved sortase A to mediate reversible transpeptidation. Both recombinant thrombomodulin and a chemoenzymatically synthesized ultra-low molecular weight heparin were repeatedly and selectively immobilized or removed in a sequential, alternating, or simultaneous manner. The generation of activated protein C (aPC) and inhibition of activated factor X (FXa) was consistent with the molecular composition of the surface. The fabrication of a rechargeable anti-thrombogenic surface was demonstrated on an expanded polytetrafluoroethylene (ePTFE) vascular graft with reconstitution of the surface bound coating 4 weeks after in vivo implantation in a rat model.


Asunto(s)
Heparina , Trombosis , Animales , Prótesis Vascular , Materiales Biocompatibles Revestidos , Politetrafluoroetileno , Ratas , Trombosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...