Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Cell Prolif ; 57(3): e13561, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37833824

RESUMEN

This study aimed to explore the osteogenic ability and mitochondrial autophagy of periodontal ligament stem cells (PDLSCs) under cyclic tensile stress (CTS). Primary PDLSCs were isolated from the periodontal membrane and cultured by passage. Alizarin red staining, alkaline phosphatase detection, reverse transcription polymerase chain reaction (RT-PCR), and Western blotting were used to detect the osteogenic differentiation level of PDLSCs. Mitochondrial autophagy in PDLSCs after CTS was measured using a mitochondrial autophagy detection kit, and the expression levels of autophagy-related proteins LC3B, LAMP1 and Beclin1 were measured using cellular immunofluorescence technology, RT-PCR and Western blot. After applying CTS, the osteogenic differentiation ability of PDLSCs was significantly improved, and the expression of alkaline phosphatase on the surface of the cell membrane and the formation of calcium nodules in PDLSCs were significantly increased respectively. We also studied the relevant mechanism of action and found that applying CTS can promote the osteogenic differentiation of PDLSCs and is related to the activation of mitochondrial autophagy. This study provides new insights into the mechanism of increased osteogenic differentiation on the tension side of orthodontic teeth and provides new experimental evidence for the involvement of mitochondrial autophagy in the regulation of osteogenic differentiation.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Fosfatasa Alcalina/metabolismo , Células Madre , Autofagia
2.
Transpl Immunol ; 74: 101653, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35772682

RESUMEN

BACKGROUND: Ischemia-reperfusion (I/R) is an important risk factor for cardiovascular diseases (CVDs) and cardiac transplantation, as I/R can cause myocardial cell hypoxia/reoxygenation (H/R) injury. Recent research has shown that circular RNAs (circRNAs) may affect the progress of H/R-induced myocardial injury, but the mechanism remains unknown. Our work explored the role of circ_0010729 in H2O2-induced myocardial injury. METHODS: The levels of circ_0010729, microRNA-1184 (miR-1184) and mRNA of receptor interacting serine/threonine kinase 1 (RIPK1) were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) in human cardiac myocytes (HCMs). Meanwhile, the protein level of RIPK1 was quantified by western blot analysis. Besides, the cell functions were examined by 5-Ethynyl-29-deoxyuridine (EdU) assay, flow cytometry assay, western blot and antioxidant indexes analysis. Furthermore, the interplay between miR-1184 and circ_0010729 or RIPK1 was detected by dual-luciferase reporter assay. Eventually, the in vivo experiments were applied to measure the role of circ_0010729. RESULTS: The levels of circ_0010729 RNA and RIPK1 protein were increased, and the miR-1184 was decreased in HCMs exposed to H2O2. In functional analysis, circ_0010729 deficiency restrained cell apoptosis and oxidative stress, whereas promoted cell proliferation in HCMs under H2O2 exposure. Moreover, miR-1184 inhibited the H2O2-induced myocardial injury by targeting RIPK1. Mechanistically, circ_0010729 acted as a miR-1184 sponge to regulate the level of RIPK1. CONCLUSION: Circ_0010729 promotes H2O2-induced myocardial injury, and thus circ_001729 may be targeted as a potential therapy for H/R-induced myocardial injury.


Asunto(s)
Peróxido de Hidrógeno , MicroARNs , Apoptosis/genética , Proliferación Celular/genética , Humanos , Peróxido de Hidrógeno/metabolismo , MicroARNs/genética , Miocardio , ARN Circular/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
3.
Appl Microbiol Biotechnol ; 97(22): 9705-13, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23455566

RESUMEN

Three cry9 genes, cry9Da4, cry9Eb2, and cry9Ee1, were cloned from Bacillus thuringiensis strain T03B001 using a high-resolution melting analysis method. All three cry9 genes were overexpressed in Escherichia coli Rosetta (DE3), and the expressed products Cry9Eb2 and Cry9Ee1 were shown to be toxic to Plutella xylostella and Ostrinia furnacalis, but not to Helicoverpa armigera or Colaphellus bowringi. The bioassay of Cry9Eb2 and Cry9Ee1 against Cry1Ac-resistant P. xylostella strains indicated that both novel Cry9 toxins exhibited no cross-resistance with Cry1Ac. Cry9Eb2 and Cry9Ee1 can be applied not only for P. xylostella and O. furnacalis control, but also for the Cry1Ac-resistance management of pests.


Asunto(s)
Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Insectos/efectos de los fármacos , Animales , Toxinas de Bacillus thuringiensis , Bioensayo , Clonación Molecular , Escherichia coli/genética , Expresión Génica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...