Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
J Hazard Mater ; 479: 135730, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39243538

RESUMEN

Sewage surveillance is a cost-effective tool for assessing antimicrobial resistance (AMR) in urban populations. However, research on sewage AMR in remote areas is still limited. Here, we used shotgun metagenomic sequencing to profile antibiotic resistance genes (ARGs) and ARG-carrying pathogens (APs) across 15 cities in Tibetan Plateau (TP) and the major cities in eastern China. Notable regional disparities in sewage ARG composition were found, with a significantly higher ARG abundance in TP (2.97 copies/cell). A total of 542 and 545 APs were identified in sewage from TP and the East, respectively, while more than 40 % carried mobile genetic elements (MGEs). Moreover, 65 MGEs-carrying APs were identified as World Health Organization (WHO) priority-like bacterial and fungal pathogens. Notably, a fungal zoonotic pathogen, Enterocytozoon bieneusi, was found for the first time to carry a nitroimidazole resistance gene (nimJ). Although distinct in AP compositions, the relative abundances of APs were comparable in these two regions. Furthermore, sewage in TP was found to be comparable to the cities in eastern China in terms of ARG mobility and AMR risks. These findings provide insights into ARGs and APs distribution in Chinese sewage and stress the importance of AMR surveillance and management strategies in remote regions.

2.
J Hazard Mater ; 479: 135525, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39217943

RESUMEN

Composting is widely applied in recycling ever-increasing sewage sludge. However, the insufficient elimination of antibiotics and antibiotic resistance genes (ARGs) in conventional compost fertilizer poses considerable threat to agriculture safety and human health. Here we investigated the efficacy and potential mechanisms in the removal of antibiotics and ARGs from sludge in hyperthermophilic composting (HTC) plant. Our results demonstrated that the HTC product was of high maturity. HTC led to complete elimination of antibiotics and potential pathogens, as well as removal of 98.8 % of ARGs and 88.1 % of mobile genetic elements (MGEs). The enrichment of antibiotic-degrading candidates and related metabolic functions during HTC suggested that biodegradation played a crucial role in antibiotic removal. Redundancy analysis (RDA) and structural equation modelling (SEM) revealed that the reduction of ARGs was attributed to the decline of ARG-associated bacteria, mainly due to the high-temperature selection. These findings highlight the feasibility of HTC in sludge recycling and provide a deeper understanding of its mechanism in simultaneous removal of antibiotics and ARGs.

3.
Water Res ; 265: 122302, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39178591

RESUMEN

Enriching microorganisms using a 0.22-µm pore size is a general pretreatment procedure in river microbiome research. However, it remains unclear the extent to which this method loses microbiome information. Here, we conducted a comparative metagenomics-based study on microbiomes with sizes over 0.22 µm (large-sized) and between 0.22 µm and 0.1 µm (small-sized) in a subtropical river. Although the absolute concentration of small-sized microbiome was about two orders of magnitude lower than that of large-sized microbiome, sequencing only large-sized microbiome resulted in a significant loss of microbiome diversity. Specifically, the microbial community was different between two sizes, and 347 genera were only detected in small-sized microbiome. Small-sized microbiome had much more diverse viral community than large-sized fraction. The viruses had abundant ecological functions and were hosted by 825 species of 169 families, including pathogen-related families. Small-sized microbiome had distinct antimicrobial resistance risks from large-sized microbiome, showing an enrichment of eight antibiotic resistance gene (ARG) types as well as the detection of 140 unique ARG subtypes and five enriched risk rank I ARGs. Draft genomes of five major resistant pathogens having diverse ecological and pollutant-degrading functions were only assembled in small-sized microbiome. These findings provide novel insights into river ecosystems, and highlight the overlooked small-sized microbiome in the environment.


Asunto(s)
Ecosistema , Microbiota , Ríos , Ríos/microbiología , Metagenómica , Bacterias/genética
4.
Sci Total Environ ; 950: 175274, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117190

RESUMEN

Rising instances of flash droughts are contributing to notable variability in soil moisture across terrestrial ecosystems. These phenomena challenge urban ecosystem services, yet the reaction of soil ecological functions (SEFs) to such events is poorly understood. This study investigates the responses of SEFs (about nutrient metabolism capacity and potential) and the microbiome under two specific scenarios: a flooding-drought sequence and a direct drought condition. Using quantitative microbial element cycling analysis, high-throughput sequencing, and enzyme activity measurements, we found that unlike in forests, the microbial composition in urban soils remained unchanged during flash drought conditions. However, SEFs were affected in both settings. Correlation analysis and Mantel test showed that forest soils exhibited more complex interactions among soil moisture, properties, and microbial communities. Positive linear correlation revealed that bacteria were the sole drivers of SEFs. Interestingly, while multi-threshold results suggested bacterial α diversity impeded the maximization of SEFs in urban soils, fungi and protists had a beneficial impact. Cross-domain network of urban soils had higher number of nodes and edges, but lower average degree and robustness than forest soils. Mantel test revealed that fungi and protist had significant correlations with bacterial composition in forest soils, but not in urban soils. In the urban network, the degree and eigenvector centrality of bacterial, fungal and protistan ASVs were significantly lower compared to those in the forest. These results suggest that the lower robustness of the microbial network in urban soils is attributed to limited interactions among fungi, consumer protists, and bacteria, contributing to the failure of microbial-driven ecological functions. Overall, our findings emphasize the critical role of fungi and protists in shielding urban soils from drought-induced disturbances and in enhancing the resistance of urban ecological functions amidst environmental changes.


Asunto(s)
Sequías , Hongos , Microbiota , Microbiología del Suelo , Suelo , Suelo/química , Ecosistema , Eucariontes , Ciudades , Bosques , Bacterias/clasificación
5.
Artículo en Inglés | MEDLINE | ID: mdl-39028609

RESUMEN

Motor imagery (MI) based brain computer interface (BCI) has been extensively studied to improve motor recovery for stroke patients by inducing neuroplasticity. However, due to the lower spatial resolution and signal-to-noise ratio (SNR) of electroencephalograph (EEG), MI based BCI system that involves decoding hand movements within the same limb remains lower classification accuracy and poorer practicality. To overcome the limitations, an adaptive hybrid BCI system combining MI and steady-state visually evoked potential (SSVEP) is developed to improve decoding accuracy while enhancing neural engagement. On the one hand, the SSVEP evoked by visual stimuli based on action-state flickering coding approach significantly improves the recognition accuracy compared to the pure MI based BCI. On the other hand, to reduce the impact of SSVEP on MI due to the dual-task interference effect, the event-related desynchronization (ERD) based neural engagement is monitored and employed for feedback in real-time to ensure the effective execution of MI tasks. Eight healthy subjects and six post-stroke patients were recruited to verify the effectiveness of the system. The results showed that the four-class gesture recognition accuracies of healthy individuals and patients could be improved to 94.37 ± 4.77 % and 79.38 ± 6.26 %, respectively. Moreover, the designed hybrid BCI could maintain the same degree of neural engagement as observed when subjects solely performed MI tasks. These phenomena demonstrated the interactivity and clinical utility of the developed system for the rehabilitation of hand function in stroke patients.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Potenciales Evocados Visuales , Mano , Rehabilitación de Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Masculino , Electroencefalografía/métodos , Femenino , Potenciales Evocados Visuales/fisiología , Persona de Mediana Edad , Adulto , Algoritmos , Imaginación/fisiología , Accidente Cerebrovascular/fisiopatología , Gestos , Anciano , Voluntarios Sanos , Adulto Joven , Estimulación Luminosa , Relación Señal-Ruido , Reproducibilidad de los Resultados
6.
iScience ; 27(7): 110193, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38984199

RESUMEN

Oyster reefs are hotspots of denitrification mediated removal of dissolved nitrogen (N), however, information on their denitrifier microbiota is scarce. Furthermore, in oyster aquaculture, triploids are often preferred over diploids, yet again, microbiome differences between oyster ploidies are unknown. To address these knowledge gaps, farmed diploid and triploid oysters were collected over an annual growth cycle and analyzed using shotgun metagenomics and quantitative microbial elemental cycling (QMEC) techniques. Regardless of ploidy, Psychrobacter genus was abundant, with positive correlations found for genes of central metabolism, DNA metabolism, and carbohydrate metabolism. MAGs (metagenome-assembled genomes) yielded multiple Psychrobacter genomes harboring norB, narH, narI, and nirK denitrification genes, indicating their functional relevance within the eastern oysters. QMEC analysis indicated the predominance of carbon (C) and nitrogen (N) cycling genes, with no discernable patterns between ploidies. Among the N-cycling genes, the nosZII clade was overrepresented, suggesting its role in the eastern oyster's N removal processes.

7.
Water Res ; 262: 122106, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39038423

RESUMEN

The global surge in antibiotic resistance genes (ARGs) presents a serious public health challenge. While methods like metagenomic analysis and qPCR arrays have been instrumental in investigating ARG distributions and dynamics, the vast diversity of ARGs often complicates effective monitoring and risk assessment. Here, we developed a High-Risk ARGs (HRA) chip based on high-capacity quantitative PCR array targeting previously identified high-risk ARGs. These ARGs are known to be prevalent in human-related environments, exhibit gene mobility, and are present in ESKAPE pathogens. The HRA chip include 101 primer sets and the 16S rRNA gene as a reference. These primer sets consist of 34 obtained from previous studies, and 67 newly designed primer sets which were validated in silico and experimentally. Absolute quantification of targeted ARGs is accomplished by generating standard curves for all ARGs with serially ten-fold diluted mixed plasmids containing targeted ARG sequences. The amplification efficiencies of all ARGs exceed 99% via plasmid template dilution tests, suggesting high reliability in quantification. The performance of HRA chip is further evaluated by practical applications in environmental samples from wastewater treatment plants (WWTPs) and soils with various land use types and fertilization regimes. The results indicate the dynamics of high-risk ARGs during wastewater treatment process, and reveal the profiles of soil high-risk ARGs which is distinct from those derived via metagenomic approaches. These findings highlight the potentials of HRA Chip in the evaluation of anthropogenic impacts on the environmental resistome with a more focused spectrum of high-risk ARGs. Overall, the HRA Chip emerges as a powerful and efficient high-throughput tool for rapid detection and quantification of high-risk ARGs, facilitating comprehensive profiling of high-risk resistomes in environmental samples which is essential for human health risk assessment of ARGs.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente/métodos
8.
Environ Int ; 190: 108846, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925006

RESUMEN

Natural environments play a crucial role in transmission of antimicrobial resistance (AMR). Development of methods to manage antibiotic resistance genes (ARGs) in natural environments are usually limited to the laboratory or field scale, partially due to the complex dynamics of transmission between different environmental compartments. Here, we conducted a nine-year longitudinal profiling of ARGs at a watershed scale, and provide evidence that restrictions on livestock farms near water bodies significantly reduced riverine ARG abundance. Substantial reductions were revealed in the relative abundance of genes conferring resistance to aminoglycosides (42%), MLSB (36%), multidrug (55%), tetracyclines (53%), and other gene categories (59%). Additionally, improvements in water quality were observed, with distinct changes in concentrations of dissolved reactive phosphorus, ammonium, nitrite, pH, and dissolved oxygen. Antibiotic residues and other pharmaceuticals and personal care products (PPCPs) maintain at a similarly low level. Microbial source tracking demonstrates a significant decrease in swine fecal indicators, while human fecal pollution remains unchanged. These results suggest that the reduction in ARGs was due to a substantial reduction in input of antibiotic resistant bacteria and genes from animal excreta. Our findings highlight the watershed as a living laboratory for understanding the dynamics of AMR, and for evaluating the efficacy of environmental regulations, with implications for reducing environmental risks associated with AMR on a global scale.


Asunto(s)
Antibacterianos , Granjas , Ganado , Animales , Antibacterianos/farmacología , Porcinos , Farmacorresistencia Microbiana/genética , Farmacorresistencia Bacteriana/genética , Heces/microbiología , Crianza de Animales Domésticos/métodos , Calidad del Agua , Monitoreo del Ambiente
9.
Environ Sci Pollut Res Int ; 31(23): 34295-34308, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700770

RESUMEN

Fertilization can change the composition of antibiotic resistance genes(ARGs) and their host bacteria in agricultural fields, while complex microbial activities help ARGs into crops and transmit them to humans through agricultural products.Therefore, this study constructed a farmland food chain with soil-lettuce-snail as a typical structure, added genetically engineered Pseudomonas fluorescens containing multidrug-resistant plasmid RP4 to track its spread in the farmland food chain, and used different fertilization methods to explore its influence on the spread and diffusion of ARGs and intl1 in the farmland food chain. It was found that exogenous Pseudomonas can enter plants from soil and pass into snails' intestines, and there is horizontal gene transfer phenomenon of RP4 plasmid in bacteria. At different interfaces of the constructed food chain, the addition of exogenous drug-resistant bacteria had different effects on the total abundance of ARGs and intl1. Fertilization, especially manure, not only promoted the spread of Pseudomonas aeruginosa and the transfer of RP4 plasmid levels, but also significantly increased the total abundance of ARGs and intl1 at all interfaces of the constructed food chain. The main ARGs host bacteria in the constructed food chain include Proteobacteria, Bacteroides, and Firmicutes, while Flavobacterium of Bacteroides is the unique potential host bacteria of RP4 plasmid. In conclusion, this study provides a reference for the risk assessment of ARGs transmitted to the human body through the food chain, and has important practical significance to reduce the antibiotic resistance contamination of agricultural products and ensure the safety of vegetable basket.


Asunto(s)
Farmacorresistencia Microbiana , Cadena Alimentaria , Plásmidos , Microbiología del Suelo , Plásmidos/genética , Farmacorresistencia Microbiana/genética , Animales , Caracoles , Suelo/química , Transferencia de Gen Horizontal , Antibacterianos/farmacología
10.
J Hazard Mater ; 473: 134677, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38795484

RESUMEN

The presence of antibiotic resistance genes (ARGs) in soils has received extensive attention regarding its impacts on environmental, animal, and human systems under One Health. However, the health risks of soil ARGs and microbial determinants of soil resistomes remain poorly understood. Here, a nationwide metagenomic investigation of ARGs in cropland and forest soils in China was conducted. The findings indicated that the abundance and richness of high-risk (i.e., mobilizable, pathogen-carriable and clinically relevant) ARGs in cropland soils were 25.7 times and 8.4 times higher, respectively, compared to those identified in forest soils, suggesting the contribution of agricultural practices to the elevated risk level of soil resistomes. The biosynthetic potential of antibacterials best explained the total ARG abundance (Mantel's r = 0.52, p < 0.001) when compared with environmental variables and anthropogenic disturbance. Both microbial producers' self-resistance and antagonistic interactions contributed to the ARG abundance, of which self-resistance ARGs account for 14.1 %- 35.1 % in abundance. With the increased biosynthetic potential of antibacterials, the antagonistic interactions within the microbial community were greatly enhanced, leading to a significant increase in ARG abundance. Overall, these findings advance our understanding of the emergence and dissemination of soil ARGs and provide critical implications for the risk control of soil resistomes.


Asunto(s)
Antibacterianos , Farmacorresistencia Microbiana , Metagenómica , Microbiología del Suelo , Antibacterianos/farmacología , China , Farmacorresistencia Microbiana/genética , Agricultura , Suelo/química , Metagenoma , Genes Bacterianos
11.
Environ Int ; 187: 108649, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642506

RESUMEN

Rapid urbanization in the Asia-Pacific region is expected to place two-thirds of its population in concrete-dominated urban landscapes by 2050. While diverse architectural facades define the unique appearance of these urban systems. There remains a significant gap in our understanding of the composition, assembly, and ecological potential of microbial communities on building exteriors. Here, we examined bacterial and protistan communities on building surfaces along an urbanization gradient (urban, suburban and rural regions), investigating their spatial patterns and the driving factors behind their presence. A total of 55 bacterial and protist phyla were identified. The bacterial community was predominantly composed of Proteobacteria (33.7% to 67.5%). The protistan community exhibited a prevalence of Opisthokonta and Archaeplastida (17.5% to 82.1% and 1.8% to 61.2%, respectively). The composition and functionality of bacterial communities exhibited spatial patterns correlated with urbanization. In urban buildings, factors such as facade type, light exposure, and building height had comparatively less impact on bacterial composition compared to suburban and rural areas. The highest bacterial diversity and lowest Weighted Average Community Identity (WACI) were observed on suburban buildings, followed by rural buildings. In contrast, protists did not show spatial distribution characteristics related to facade type, light exposure, building height and urbanization level. The distinct spatial patterns of protists were primarily shaped by community diffusion and the bottom-up regulation exerted by bacterial communities. Together, our findings suggest that building exteriors serve as attachment points for local microbial metacommunities, offering unique habitats where bacteria and protists exhibit independent adaptive strategies closely tied to the overall ecological potential of the community.


Asunto(s)
Bacterias , Urbanización , Bacterias/clasificación , Microbiota
12.
Sci Data ; 11(1): 250, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413616

RESUMEN

Antimicrobial resistance (AMR) poses a severe threat to global health. The wide distribution of environmental antibiotic resistance genes (ARGs), which can be transferred between microbiota, especially clinical pathogens and human commensals, contributed significantly to AMR. However, few databases on the spatiotemporal distribution, abundance, and health risk of ARGs from multiple environments have been developed, especially on the absolute level. In this study, we compiled the ARG occurrence data generated by a high-throughput quantitative PCR platform from 1,403 samples in 653 sampling sites across 18 provinces in China. The database possessed 291,870 records from five types of habitats on the abundance of 290 ARGs, as well as 8,057 records on the abundance of 30 mobile genetic elements (MGEs) from 2013 to 2020. These ARGs conferred resistance to major common types of antibiotics (a total of 15 types) and represented five major resistance mechanisms, as well as four risk ranks. The database can provide information for studies on the dynamics of ARGs and is useful for the health risk assessment of AMR.


Asunto(s)
Antibacterianos , Bases de Datos Genéticas , Farmacorresistencia Microbiana , Microbiota , Antibacterianos/farmacología , China , Farmacorresistencia Microbiana/genética , Genes Bacterianos
13.
Environ Sci Technol ; 58(8): 3919-3930, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38353611

RESUMEN

The microorganisms present in kindergartens are extremely important for children's health during their three-year preschool education. To assess the risk of outdoor dust in kindergartens, the antibiotic resistome and potential pathogens were investigated in dust samples collected from 59 kindergartens in Xiamen, southeast China in both the winter and summer. Both high-throughput quantitative PCR and metagenome analysis revealed a higher richness and abundance of antibiotic resistance genes (ARGs) in winter (P < 0.05). Besides, the bloom of ARGs and potential pathogens was evident in the urban kindergartens. The co-occurrence patterns among ARGs, mobile genetic elements (MGEs), and potential pathogens suggested some bacterial pathogens were potential hosts of ARGs and MGEs. We found a large number of high-risk ARGs in the dust; the richness and abundance of high-risk ARGs were higher in winter and urban kindergartens compared to in summer and peri-urban kindergartens, respectively. The results of the co-occurrence patterns and high-risk ARGs jointly reveal that urbanization will significantly increase the threat of urban dust to human beings and their risks will be higher in winter. This study unveils the close association between ARGs/mobile ARGs and potential pathogens and emphasizes that we should pay more attention to the health risks induced by their combination.


Asunto(s)
Bacterias , Genes Bacterianos , Niño , Humanos , Farmacorresistencia Microbiana/genética , Bacterias/genética , China , Urbanización , Antibacterianos/farmacología
14.
J Hazard Mater ; 468: 133792, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368685

RESUMEN

Disinfectants and antibiotics are widely used for the prevention and control of bacterial infectious diseases. Frequent disinfection is thought to exacerbate antibiotic resistance. However, little is known about how disinfectants and antibiotics co-induce changes in the soil antibiotic resistance genes (ARGs). This study determined the ARG profiles and bacterial community dynamics between unamended soil and manure-amended soil exposed to benzalkonium chloride (C12) (BC, 10 mg kg-1) disinfectant and sulfamethazine (SMZ, 1 mg kg-1), using high-throughput quantitative PCR and 16 S rRNA gene sequencing. Manure application enriched the soil in terms of ARGs abundance and diversity, which synergistically amplified the co-selection effect of BC and SMZ on soil antibiotic resistome. Compared with the control treatment, BC and SMZ exposure had a smaller impact on the bacterial infectious diseases and antimicrobial resistance-related functions in manure-amended soil, in which bacterial communities with greater tolerance to antimicrobial substances were constructed. Manure application increased the proportion of rank I ARGs and potential human pathogenic bacteria, while BC and SMZ exposure increased the drug-resistant pathogens transmission risk. This study validated that BC and SMZ aggravated the antimicrobial resistance under manure application, providing a reference for managing the spread risk of antimicrobial resistance in agricultural activities.


Asunto(s)
Enfermedades Transmisibles , Desinfectantes , Humanos , Suelo , Antibacterianos/toxicidad , Estiércol/microbiología , Genes Bacterianos , Desinfectantes/toxicidad , Desinfectantes/análisis , Microbiología del Suelo , Bacterias/genética , Sulfametazina
15.
J Hazard Mater ; 465: 133392, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38171204

RESUMEN

Antibiotic resistance is an escalating global concern, leading to millions of annual deaths worldwide. Human activities can impact antibiotic resistance gene (ARG) prevalence in aquatic ecosystems, but the intricate interplay between anthropogenic disturbances and river system resilience, and their respective contributions to the dynamics of different river segments, remains poorly understood. In this study, we investigate the antibiotic resistome and microbiome in water and sediment samples from two distinct sub-watersheds within a specific watershed. Results show a decrease in the number of core ARGs downstream in water, while sediments near densely populated areas exhibit an increase. PCoA ordination reveals clear geographic clustering of resistome and microbiome among samples from strong anthropogenic disturbed areas, reservoir areas, and estuary area. Co-occurrence networks highlight a higher connectivity of mobile genetic elements (MGEs) in disturbed areas compared to reservoir areas, presenting a threat to densely populated areas. Water quality parameters and antibiotics concentration were the key factors shaping the ARG profiles in sediment samples from urban regions. Overall, our study reveals distinct patterns of ARGs in sediment and water samples, emphasizing the importance of considering both anthropogenic and natural factors in comprehending and managing ARG distribution in river systems.


Asunto(s)
Genes Bacterianos , Microbiota , Humanos , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Ríos
16.
Huan Jing Ke Xue ; 45(1): 576-583, 2024 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-38216506

RESUMEN

Urban wetland parks are an important practice for urban wetland protection and utilization due to the vast ecosystem service value. As emerging contaminants, antibiotic resistance genes (ARGs) are great attractions for environmental research and public concerns. Based on high-throughput qPCR and high-throughput amplicon sequencing techniques, we investigated the occurrence, abundance, and distribution profiles of antibiotic resistance genes in the aquatic environment of Xiamen urban wetland parks (five sites). The influencing factors and driving mechanisms of antibiotic resistance genes were deciphered on the basis of microbial community structure and water quality. Diverse and abundant ARGs were observed and coexisted in urban wet parks. A total of 217 ARGs were detected in the water body of urban wetland parks, with an abundance up to 6.48×109 copies·L-1. Urban wetland parks were important hotspots and repositories of the antibiotic resistome. A total of nine bacterial genera, including Marivivens, NS5_marine_group, and Planktomarina, were identified as the potential carriers of diverse resistance genes (41 ARGs). The microbial communities could alone explain 51% of alterations in the antibiotic resistome in the aquatic environment of the urban wetland parks. Therefore, the microbial community was the key driving force for the occurrence and evolution of ARGs in urban wetland parks. Based on the results, with the presence of ARGs and antibiotic resistance bacteria, it is suggested that the water environments of urban wetland parks have potential risks of water ecological security and human health, and it is necessary to further enhance the research and control of microbial contaminants in the aquatic environment of urban wetland parks.


Asunto(s)
Genes Bacterianos , Microbiota , Humanos , Genes Bacterianos/genética , Humedales , Antibacterianos/análisis , Farmacorresistencia Microbiana/genética , Bacterias/genética
17.
J Environ Manage ; 351: 119721, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043315

RESUMEN

Urbanization has increased the spread of antibiotic resistance genes (ARGs) impacting urban aquatic ecosystems and threatening human health. However, an overview of the antibiotic resistome in artificial coastal lagoons formed by coastal seawall construction is unclear. This study investigated the resistome of sediment in a coastal lagoon, established for over 60 years and found that the composition of the resistome in the lagoon sediments associated with the seawall significantly differed from that of marine sediment external to the seawall. Moreover, the diversity, number, relative abundance, and absolute abundance of the antibiotic resistome in the lagoon sediments were significantly higher compared to marine sediment. Network analyses revealed that more co-occurrences were found in lagoon sediment between bacterial communities, ARGs and mobile genetic elements (MGEs) than in marine sediments, suggesting that bacteria in lagoon sediments may be associated with multiple antibiotic resistances. Random forest and structural equation models showed that an increase in the absolute abundance of MGEs had a concomitant effect on the absolute abundance and diversity of ARGs, whereas increasing salinity decreased the absolute abundance of ARGs. This study provides a basis to assess the risk of resistome diffusion and persistence in an artificial coastal lagoon.


Asunto(s)
Antibacterianos , Genes Bacterianos , Humanos , Antibacterianos/farmacología , Ecosistema , Bacterias/genética , Farmacorresistencia Microbiana/genética
18.
J Hazard Mater ; 460: 132511, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708648

RESUMEN

The granular activated carbon (GAC) sandwich modification to slow sand filtration could be considered as a promising technology for improved drinking water quality. Biofilms developed on sand and GAC surfaces are expected to show a functional diversity during the biofiltration. Bench-scale GAC sandwich biofilters were set-up and run continuously with and without antibiotic exposure. Surface sand (the schmutzdecke) and GAC biofilms were sampled and subject to high-throughput qPCR for antibiotic resistance gene (ARG) analysis and 16 S rRNA amplicon sequencing. Similar diversity of ARG profile was found in both types of biofilms, suggesting that all ARG categories decreased in richness along the filter bed. In general, surface sand biofilm remained the most active layer with regards to the richness and abundance of ARGs, where GAC biofilms showed slightly lower ARG risks. Network analysis suggested that 10 taxonomic genera were implicated as possible ARG hosts, among which Nitrospira, Methyloversatilis and Methylotenera showed the highest correlation. Overall, this study was the first attempt to consider the whole structure of the GAC sandwich biofilter and results from this study could help to further understand the persistence of ARGs and their association with the microbial community in drinking water biofiltration system.


Asunto(s)
Carbón Orgánico , Agua Potable , Arena , Antibacterianos , Bacterias/genética , Biopelículas , Farmacorresistencia Microbiana/genética
19.
Sci Total Environ ; 897: 165346, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419346

RESUMEN

Warming affects microbial functioning of soil and the phyllosphere across global ecosystems. However, little is known about the impact of increasing temperature on antibiotic resistome profiles in natural forests. To address this issue, we investigated antibiotic resistance genes (ARGs) in both soil and the plant phyllosphere using an experimental platform established in a forest ecosystem that delivers a temperature difference of 2.1 °C along an altitudinal gradient. Principal Coordinate Analysis (PCoA) showed that there were significant differences in the composition of soil and plant phyllosphere ARGs at different altitudes (P = 0.001). The relative abundance of phyllosphere ARGs and mobile genetic elements (MGEs) and soil MGEs increased with temperature. More resistance gene classes increased in abundance in the phyllosphere (10 classes) than soil (2 classes), and a Random Forest model analysis suggested that phyllosphere ARGs were more sensitive to temperature change than soil. Increasing temperature as a direct consequence of an altitudinal gradient, and the relative abundance of MGEs were the main drivers that shaped the profiles of ARGs in the phyllosphere and soil. Biotic and abiotic factors affected phyllosphere ARGs indirectly via MGEs. This study enhances our understanding of the influence of altitude gradients on resistance genes in natural environments.


Asunto(s)
Genes Bacterianos , Suelo , Ecosistema , Antibacterianos , Plantas , Microbiología del Suelo
20.
Huan Jing Ke Xue ; 44(7): 4052-4058, 2023 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-37438303

RESUMEN

The oasis agro-ecosystem is a complex ecosystem with intensive human activities in arid areas. Microbial antibiotic resistance is posing threats to human health and ecological balance. It is of great importance to investigate the diversity, distribution profiles, and driving factors of soil antibiotic resistance genes under different land use patterns in a desert-oasis continuum, especially for assessing soil environmental and human health risks in arid regions. In this study, high throughput sequencing combined with high throughput quantitative PCR were used to investigate the microbial community structure and patterns of antibiotic resistance genes in a desert-oasis continuum, aiming to explore the distribution characteristics and driving mechanisms of soil resistance genes. The results showed that the diversity and abundance of antibiotic resistance increased significantly from the edge of desert to the central oasis, along with Dest, Cotn, Maiz, Reed, and Sedt, consecutively, implying that farmland soil was an important reservoir of resistance genes, which was closely related to land use and land cover change. Soil microbial communities were significantly correlated with antibiotic resistance genes. Thiobacillus, Pontibacter, Nocardioides, Salinimicrobium, Solirubrobacter, and Streptomyces were important potential hosts of various resistance genes. The patterns of antibiotic resistance genes were shaped by heavy metal elements, MGEs, and microbial communities in arid soil, which accumulatively accounted for 70% of the variations in resistance genes alone or together and therefore drove the occurrence, enrichment, and evolution of resistance genes in agricultural soil of the desert-oasis continuum.


Asunto(s)
Agricultura , Microbiota , Humanos , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...