Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 26(24): 6535-6549, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32988967

RESUMEN

PURPOSE: Targeting Bcl-2 family members upregulated in multiple cancers has emerged as an important area of cancer therapeutics. While venetoclax, a Bcl-2-selective inhibitor, has had success in the clinic, another family member, Bcl-xL, has also emerged as an important target and as a mechanism of resistance. Therefore, we developed a dual Bcl-2/Bcl-xL inhibitor that broadens the therapeutic activity while minimizing Bcl-xL-mediated thrombocytopenia. EXPERIMENTAL DESIGN: We used structure-based chemistry to design a small-molecule inhibitor of Bcl-2 and Bcl-xL and assessed the activity against in vitro cell lines, patient samples, and in vivo models. We applied pharmacokinetic/pharmacodynamic (PK/PD) modeling to integrate our understanding of on-target activity of the dual inhibitor in tumors and platelets across dose levels and over time. RESULTS: We discovered AZD4320, which has nanomolar affinity for Bcl-2 and Bcl-xL, and mechanistically drives cell death through the mitochondrial apoptotic pathway. AZD4320 demonstrates activity in both Bcl-2- and Bcl-xL-dependent hematologic cancer cell lines and enhanced activity in acute myeloid leukemia (AML) patient samples compared with the Bcl-2-selective agent venetoclax. A single intravenous bolus dose of AZD4320 induces tumor regression with transient thrombocytopenia, which recovers in less than a week, suggesting a clinical weekly schedule would enable targeting of Bcl-2/Bcl-xL-dependent tumors without incurring dose-limiting thrombocytopenia. AZD4320 demonstrates monotherapy activity in patient-derived AML and venetoclax-resistant xenograft models. CONCLUSIONS: AZD4320 is a potent molecule with manageable thrombocytopenia risk to explore the utility of a dual Bcl-2/Bcl-xL inhibitor across a broad range of tumor types with dysregulation of Bcl-2 prosurvival proteins.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Neoplasias Hematológicas/tratamiento farmacológico , Piperidinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Sulfonas/farmacología , Trombocitopenia/tratamiento farmacológico , Proteína bcl-X/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Apoptosis , Benzamidas/uso terapéutico , Proliferación Celular , Femenino , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Piperidinas/uso terapéutico , Sulfonas/uso terapéutico , Trombocitopenia/metabolismo , Trombocitopenia/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Ophthalmic Epidemiol ; 27(2): 93-97, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31658843

RESUMEN

Purpose: To determine the association of selected social determinants of health (SDH) assessed by the National Health Interview Survey (NHIS) among adults with visual difficulty.Methods: Data from adults 18 years of age and older relevant to self-reported visual difficulty were extracted from the 2016 NHIS dataset. A multivariate logistic regression model was used to determine associations between self-reported visual difficulty and key social determinants of health identified by the Kaiser Family Foundation and American College of Physicians. Outcomes were reported as odds ratios (OR) with 95% confidence intervals (CI).Results: Self-reported visual difficulty was significantly associated with lower educational attainment (OR 1.54; 95% CI, 1.30-1.81), having healthcare coverage through Medicaid (OR 1.44; 95% CI, 1.23-1.67), food insecurity (OR 1.75; 95% CI, 1.54-1.99), problems with paying medical bills (OR 1.60; 95% CI, 1.40-1.83), trouble finding a doctor (OR 1.49; 95% CI, 1.19-1.86), cost-related medication underuse (OR 1.72; 95% CI, 1.54-1.93), and identification as a non-heterosexual male (OR 1.82; 95% CI, 1.21-2.73). Those who were employed were at lower risk of visual difficulty compared to those who were looking for work or not working (OR 0.79; 95% CI, 0.71-0.89).Conclusion: A subset of SDH as evaluated by the NHIS are positively associated with self-reported visual difficulty. If validated, these results could inform future public health interventions that may reduce the incidence and burden of visual difficulty.


Asunto(s)
Seguro de Salud/economía , Cumplimiento de la Medicación/estadística & datos numéricos , Autoinforme/estadística & datos numéricos , Determinantes Sociales de la Salud/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Costos de los Medicamentos , Escolaridad , Femenino , Inseguridad Alimentaria/economía , Humanos , Incidencia , Seguro de Salud/estadística & datos numéricos , Masculino , Medicaid/economía , Medicaid/estadística & datos numéricos , Persona de Mediana Edad , Minorías Sexuales y de Género/psicología , Minorías Sexuales y de Género/estadística & datos numéricos , Determinantes Sociales de la Salud/economía , Factores Socioeconómicos , Encuestas y Cuestionarios , Estados Unidos/epidemiología , Trastornos de la Visión/epidemiología
3.
Clin Cancer Res ; 26(4): 922-934, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31699827

RESUMEN

PURPOSE: Cyclin-dependent kinase 9 (CDK9) is a transcriptional regulator and potential therapeutic target for many cancers. Multiple nonselective CDK9 inhibitors have progressed clinically but were limited by a narrow therapeutic window. This work describes a novel, potent, and highly selective CDK9 inhibitor, AZD4573. EXPERIMENTAL DESIGN: The antitumor activity of AZD4573 was determined across broad cancer cell line panels in vitro as well as cell line- and patient-derived xenograft models in vivo. Multiple approaches, including integrated transcriptomic and proteomic analyses, loss-of-function pathway interrogation, and pharmacologic comparisons, were employed to further understand the major mechanism driving AZD4573 activity and to establish an exposure/effect relationship. RESULTS: AZD4573 is a highly selective and potent CDK9 inhibitor. It demonstrated rapid induction of apoptosis and subsequent cell death broadly across hematologic cancer models in vitro, and MCL-1 depletion in a dose- and time-dependent manner was identified as a major mechanism through which AZD4573 induces cell death in tumor cells. This pharmacodynamic (PD) response was also observed in vivo, which led to regressions in both subcutaneous tumor xenografts and disseminated models at tolerated doses both as monotherapy or in combination with venetoclax. This understanding of the mechanism, exposure, and antitumor activity of AZD4573 facilitated development of a robust pharmacokinetic/PD/efficacy model used to inform the clinical trial design. CONCLUSIONS: Selective targeting of CDK9 enables the indirect inhibition of MCL-1, providing a therapeutic option for MCL-1-dependent diseases. Accordingly, AZD4573 is currently being evaluated in a phase I clinical trial for patients with hematologic malignancies (clinicaltrials.gov identifier: NCT03263637).See related commentary by Alcon et al., p. 761.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Apoptosis/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteómica
4.
Bioorg Med Chem Lett ; 29(23): 126682, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31606346

RESUMEN

Over the last ten years, targeted covalent inhibition has become a key discipline within medicinal chemistry research, most notably in the development of oncology therapeutics. One area where this approach is underrepresented, however, is in targeting protein-protein interactions. This is primarily because these hydrophobic interfaces lack appropriately located cysteine residues to allow for standard conjugate addition chemistry. Herein, we report our development of the first covalent inhibitors of the antiapoptotic protein B-cell lymphoma extra-large (Bcl-xL), utilizing a sulfonyl fluoride (SF) warhead to selectively covalently modify tyrosine 101 of the BH3 domain-binding groove. These compounds display time-dependent inhibition in a biochemical assay and are cellularly active (U266B1). In addition, compound 7 was further elaborated to generate a chemical-biology probe molecule, which may find utility in understanding the intricacies of Bcl-xL biology.


Asunto(s)
Proteína bcl-X/antagonistas & inhibidores , Humanos , Modelos Moleculares , Unión Proteica
5.
Nat Commun ; 9(1): 5341, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559424

RESUMEN

Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing induction of apoptosis in many cancers. High expression of Mcl-1 causes tumorigenesis and resistance to anticancer therapies highlighting the potential of Mcl-1 inhibitors as anticancer drugs. Here, we describe AZD5991, a rationally designed macrocyclic molecule with high selectivity and affinity for Mcl-1 currently in clinical development. Our studies demonstrate that AZD5991 binds directly to Mcl-1 and induces rapid apoptosis in cancer cells, most notably myeloma and acute myeloid leukemia, by activating the Bak-dependent mitochondrial apoptotic pathway. AZD5991 shows potent antitumor activity in vivo with complete tumor regression in several models of multiple myeloma and acute myeloid leukemia after a single tolerated dose as monotherapy or in combination with bortezomib or venetoclax. Based on these promising data, a Phase I clinical trial has been launched for evaluation of AZD5991 in patients with hematological malignancies (NCT03218683).


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Animales , Bortezomib/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Mieloma Múltiple/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Ratas , Ratas Desnudas , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cancer Res ; 78(23): 6691-6702, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30297535

RESUMEN

: PARP proteins represent a class of post-translational modification enzymes with diverse cellular functions. Targeting PARPs has proven to be efficacious clinically, but exploration of the therapeutic potential of PARP inhibition has been limited to targeting poly(ADP-ribose) generating PARP, including PARP1/2/3 and tankyrases. The cancer-related functions of mono(ADP-ribose) generating PARP, including PARP6, remain largely uncharacterized. Here, we report a novel therapeutic strategy targeting PARP6 using the first reported PARP6 inhibitors. By screening a collection of PARP compounds for their ability to induce mitotic defects, we uncovered a robust correlation between PARP6 inhibition and induction of multipolar spindle (MPS) formation, which was phenocopied by PARP6 knockdown. Treatment with AZ0108, a PARP6 inhibitor with a favorable pharmacokinetic profile, potently induced the MPS phenotype, leading to apoptosis in a subset of breast cancer cells in vitro and antitumor effects in vivo. In addition, Chk1 was identified as a specific substrate of PARP6 and was further confirmed by enzymatic assays and by mass spectrometry. Furthermore, when modification of Chk1 was inhibited with AZ0108 in breast cancer cells, we observed marked upregulation of p-S345 Chk1 accompanied by defects in mitotic signaling. Together, these results establish proof-of-concept antitumor efficacy through PARP6 inhibition and highlight a novel function of PARP6 in maintaining centrosome integrity via direct ADP-ribosylation of Chk1 and modulation of its activity. SIGNIFICANCE: These findings describe a new inhibitor of PARP6 and identify a novel function of PARP6 in regulating activation of Chk1 in breast cancer cells.


Asunto(s)
ADP Ribosa Transferasas/antagonistas & inhibidores , Neoplasias de la Mama/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Ensayos Antitumor por Modelo de Xenoinjerto
7.
ChemMedChem ; 13(3): 231-235, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29266803

RESUMEN

Cyclin-dependent kinase (CDK) 12 knockdown via siRNA decreases the transcription of DNA-damage-response genes and sensitizes BRCA wild-type cells to poly(ADP-ribose) polymerase (PARP) inhibition. To recapitulate this effect with a small molecule, we sought a potent, selective CDK12 inhibitor. Crystal structures and modeling informed hybridization between dinaciclib and SR-3029, resulting in lead compound 5 [(S)-2-(1-(6-(((6,7-difluoro-1H-benzo[d]imidazol-2-yl)methyl)amino)-9-ethyl-9H-purin-2-yl)piperidin-2-yl)ethan-1-ol]. Further structure-guided optimization delivered a series of selective CDK12 inhibitors, including compound 7 [(S)-2-(1-(6-(((6,7-difluoro-1H-benzo[d]imidazol-2-yl)methyl)amino)-9-isopropyl-9H-purin-2-yl)piperidin-2-yl)ethan-1-ol]. Profiling of this compound across CDK9, 7, 2, and 1 at high ATP concentration, single-point kinase panel screening against 352 targets at 0.1 µm, and proteomics via kinase affinity matrix technology demonstrated the selectivity. This series of compounds inhibits phosphorylation of Ser2 on the C-terminal repeat domain of RNA polymerase II, consistent with CDK12 inhibition. These selective compounds were also acutely toxic to OV90 as well as THP1 cells.


Asunto(s)
Bencimidazoles/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Piperidinas/síntesis química , Purinas/química , Compuestos de Piridinio/química , Bencimidazoles/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cristalización , Óxidos N-Cíclicos , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Diseño de Fármacos , Humanos , Indolizinas , Cinética , Fosforilación , Piperidinas/farmacología , Unión Proteica , Purinas/farmacología , Compuestos de Piridinio/farmacología , ARN Polimerasa II/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
9.
ACS Med Chem Lett ; 8(2): 239-244, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28197319

RESUMEN

Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors. Screening of DNA-encoded libraries resulted in hit compound 1, a 1.5 µM Mcl-1 inhibitor. A subsequent crystal structure demonstrated that compound 1 bound to Mcl-1 in a ß-turn conformation, such that the two ends of the peptide were close together. This proximity allowed for the linking of the two ends of the peptide to form a macrocycle. Macrocyclization resulted in an approximately 10-fold improvement in binding potency. Further exploration of a key hydrophobic interaction with Mcl-1 protein and also with the moiety that engages Arg256 led to additional potency improvements. The use of protein-ligand crystal structures and binding kinetics contributed to the design and understanding of the potency gains. Optimized compound 26 is a <3 nM Mcl-1 inhibitor, while inhibiting Bcl-2 at only 5 µM and Bcl-xL at >99 µM, and induces cleaved caspase-3 in MV4-11 cells with an IC50 of 3 µM after 6 h.

10.
Nat Chem Biol ; 12(11): 931-936, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27595327

RESUMEN

Targeted covalent inhibition of disease-associated proteins has become a powerful methodology in the field of drug discovery, leading to the approval of new therapeutics. Nevertheless, current approaches are often limited owing to their reliance on a cysteine residue to generate the covalent linkage. Here we used aryl boronic acid carbonyl warheads to covalently target a noncatalytic lysine side chain, and generated to our knowledge the first reversible covalent inhibitors for Mcl-1, a protein-protein interaction (PPI) target that has proven difficult to inhibit via traditional medicinal chemistry strategies. These covalent binders exhibited improved potency in comparison to noncovalent congeners, as demonstrated in biochemical and cell-based assays. We identified Lys234 as the residue involved in covalent modification, via point mutation. The covalent binders discovered in this study will serve as useful starting points for the development of Mcl-1 therapeutics and probes to interrogate Mcl-1-dependent biological phenomena.


Asunto(s)
Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Lisina/química , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Ácidos Borónicos/síntesis química , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Lisina/metabolismo , Estructura Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Relación Estructura-Actividad
11.
Bioorg Med Chem Lett ; 26(19): 4775-4780, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27578247

RESUMEN

During the lead generation and optimization of PARP inhibitors blocking centrosome clustering, it was discovered that increasing hydrogen bond acceptor (HBA) strength improved cellular potency but led to elevated Caco2 and MDR1 efflux and thus poor oral bioavailability. Conversely, compounds with lower efflux had reduced potency. The project team was able to improve the bioavailability by reducing efflux through systematic modifications to the strength of the HBA by changing the electronic properties of neighboring groups, whilst maintaining sufficient acceptor strength for potency. Additionally, it was observed that enantiomers with different potency showed similar efflux, which is consistent with the promiscuity of efflux transporters. Eventually, a balance between potency and low efflux was achieved for a set of lead compounds with good bioavailability which allowed the project to progress towards establishing in vivo pharmacokinetic/pharmacodynamic relationships.


Asunto(s)
Centrosoma/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Células CACO-2 , Perros , Humanos , Enlace de Hidrógeno , Células de Riñón Canino Madin Darby , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Ratas
12.
Bioorg Med Chem Lett ; 25(24): 5743-7, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546219

RESUMEN

The propensity for cancer cells to accumulate additional centrosomes relative to normal cells could be exploited for therapeutic benefit in oncology. Following literature reports that suggested TNKS1 (tankyrase 1) and PARP16 may be involved with spindle structure and function and may play a role in suppressing multi-polar spindle formation in cells with supernumerary centrosomes, we initiated a phenotypic screen to look for small molecule poly (ADP-ribose) polymerase (PARP) enzyme family inhibitors that could produce a multi-polar spindle phenotype via declustering of centrosomes. Screening of AstraZeneca's collection of phthalazinone PARP inhibitors in HeLa cells using high-content screening techniques identified several compounds that produced a multi-polar spindle phenotype at low nanomolar concentrations. Characterization of these compounds across a broad panel of PARP family enzyme assays indicated that they had activity against several PARP family enzymes, including PARP1, 2, 3, 5a, 5b, and 6. Further optimization of these initial hits for improved declustering potency, solubility, permeability, and oral bioavailability resulted in AZ0108, a PARP1, 2, 6 inhibitor that potently inhibits centrosome clustering and is suitable for in vivo efficacy and tolerability studies.


Asunto(s)
Centrosoma/metabolismo , Ftalazinas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Administración Oral , Animales , Sitios de Unión , Células CACO-2 , Centrosoma/efectos de los fármacos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Células HeLa , Humanos , Microsomas/metabolismo , Conformación Molecular , Simulación de Dinámica Molecular , Ftalazinas/administración & dosificación , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Estructura Terciaria de Proteína , Ratas , Tanquirasas/antagonistas & inhibidores , Tanquirasas/metabolismo
13.
ACS Med Chem Lett ; 6(3): 254-9, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25815142

RESUMEN

The canonical Wnt pathway plays an important role in embryonic development, adult tissue homeostasis, and cancer. Germline mutations of several Wnt pathway components, such as Axin, APC, and ß-catenin, can lead to oncogenesis. Inhibition of the poly(ADP-ribose) polymerase (PARP) catalytic domain of the tankyrases (TNKS1 and TNKS2) is known to inhibit the Wnt pathway via increased stabilization of Axin. In order to explore the consequences of tankyrase and Wnt pathway inhibition in preclinical models of cancer and its impact on normal tissue, we sought a small molecule inhibitor of TNKS1/2 with suitable physicochemical properties and pharmacokinetics for hypothesis testing in vivo. Starting from a 2-phenyl quinazolinone hit (compound 1), we discovered the pyrrolopyrimidinone compound 25 (AZ6102), which is a potent TNKS1/2 inhibitor that has 100-fold selectivity against other PARP family enzymes and shows 5 nM Wnt pathway inhibition in DLD-1 cells. Moreover, compound 25 can be formulated well in a clinically relevant intravenous solution at 20 mg/mL, has demonstrated good pharmacokinetics in preclinical species, and shows low Caco2 efflux to avoid possible tumor resistance mechanisms.

14.
J Med Chem ; 57(23): 9958-70, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25458601

RESUMEN

KIFC1 (HSET), a member of the kinesin-14 family of motor proteins, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division. To explore the potential of KIFC1 as a therapeutic target for human cancers, a series of potent KIFC1 inhibitors featuring a phenylalanine scaffold was developed from hits identified through high-throughput screening (HTS). Optimization of the initial hits combined both design-synthesis-test cycles and an integrated high-throughput synthesis and biochemical screening method. An important aspect of this integrated method was the utilization of DMSO stock solutions of compounds registered in the corporate compound collection as synthetic reactants. Using this method, over 1500 compounds selected for structural diversity were quickly assembled in assay-ready 384-well plates and were directly tested after the necessary dilutions. Our efforts led to the discovery of a potent KIFC1 inhibitor, AZ82, which demonstrated the desired centrosome declustering mode of action in cell studies.


Asunto(s)
Alanina/análogos & derivados , Cinesinas/antagonistas & inhibidores , Piridinas/síntesis química , Alanina/síntesis química , Alanina/farmacología , Animales , Células HeLa , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Concentración 50 Inhibidora , Ratones , Fenilalanina/análogos & derivados , Piridinas/farmacología , Ratas , Relación Estructura-Actividad
15.
ACS Chem Biol ; 8(10): 2201-8, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23895133

RESUMEN

Centrosome amplification is observed in many human cancers and has been proposed to be a driver of both genetic instability and tumorigenesis. Cancer cells have evolved mechanisms to bundle multiple centrosomes into two spindle poles to avoid multipolar mitosis that can lead to chromosomal segregation defects and eventually cell death. KIFC1, a kinesin-14 family protein, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division, suggesting that KIFC1 is an attractive therapeutic target for human cancers. To this end, we have identified the first reported small molecule inhibitor AZ82 for KIFC1. AZ82 bound specifically to the KIFC1/microtubule (MT) binary complex and inhibited the MT-stimulated KIFC1 enzymatic activity in an ATP-competitive and MT-noncompetitive manner with a Ki of 0.043 µM. AZ82 effectively engaged with the minus end-directed KIFC1 motor inside cells to reverse the monopolar spindle phenotype induced by the inhibition of the plus end-directed kinesin Eg5. Treatment with AZ82 caused centrosome declustering in BT-549 breast cancer cells with amplified centrosomes. Consistent with genetic studies, our data confirmed that KIFC1 inhibition by a small molecule holds promise for targeting cancer cells with amplified centrosomes and provided evidence that functional suppression of KIFC1 by inhibiting its enzymatic activity could be an effective means for developing cancer therapeutics.


Asunto(s)
Alanina/análogos & derivados , Descubrimiento de Drogas , Cinesinas/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Alanina/química , Alanina/farmacología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Modelos Moleculares
16.
ACS Med Chem Lett ; 3(4): 278-83, 2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-24900464

RESUMEN

In this paper we describe a series of 3-cyano-5-aryl-7-aminopyrazolo[1,5-a]pyrimidine hits identified by kinase-focused subset screening as starting points for the structure-based design of conformationally constrained 6-acetamido-indole inhibitors of CK2. The synthesis, SAR, and effects of this novel series on Akt signaling and cell proliferation in vitro are described.

17.
J Virol ; 83(4): 1811-22, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19073723

RESUMEN

Gammaherpesviruses Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus are associated with multiple human cancers. Our goal was to develop a quantitative, high-throughput functional profiling system to identify viral cis-elements and protein subdomains critical for virus replication in the context of the herpesvirus genome. In gamma-2 herpesviruses, the transactivating factor RTA is essential for initiation of lytic gene expression and viral reactivation. We used the RTA locus as a model to develop the functional profiling approach. The mutant murine gammaherpesvirus 68 viral library, containing 15-bp random insertions in the RTA locus, was passaged in murine fibroblast cells for multiple rounds of selection. The effect of each 15-bp insertion was characterized using fluorescent-PCR profiling. We identified 1,229 insertions in the 3,845-bp RTA locus, of which 393, 282, and 554 were critically impaired, attenuated, and tolerated, respectively, for viral growth. The functional profiling phenotypes were verified by examining several individual RTA mutant clones for transactivating function of the RTA promoter and transcomplementing function of the RTA-null virus. Thus, the profiling approach enabled us to identify several novel functional domains in the RTA locus in the context of the herpesvirus genome. Importantly, our study has demonstrated a novel system to conduct high-density functional genetic mapping. The genome-scale expansion of the genetic profiling approach will expedite the functional genomics research on herpesvirus.


Asunto(s)
Mutagénesis Insercional , Rhadinovirus/fisiología , Transactivadores/fisiología , Proteínas no Estructurales Virales/fisiología , Replicación Viral , Animales , Línea Celular , Fibroblastos/virología , Prueba de Complementación Genética , Ratones , Rhadinovirus/genética , Rhadinovirus/crecimiento & desarrollo , Transactivadores/genética , Proteínas no Estructurales Virales/genética
18.
J Biol Chem ; 283(47): 32334-43, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18775810

RESUMEN

The Janus-associated kinase 2 (JAK2) V617F mutation is believed to play a critical role in the pathogenesis of polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. We have characterized a novel small molecule JAK2 inhibitor, AZ960, and used it as a tool to investigate the consequences of JAK2 V617F inhibition in the SET-2 cell line. AZ960 inhibits JAK2 kinase with a K(i) of 0.00045 microm in vitro and treatment of TEL-JAK2 driven Ba/F3 cells with AZ960 blocked STAT5 phosphorylation and potently inhibited cell proliferation (GI(50)=0.025 microm). AZ960 demonstrated selectivity for TEL-JAK2-driven STAT5 phosphorylation and cell proliferation when compared with cell lines driven by similar fusions of the other JAK kinase family members. In the SET-2 human megakaryoblastic cell line, heterozygous for the JAK2 V617F allele, inhibition of JAK2 resulted in decreased STAT3/5 phosphorylation and inhibition of cell proliferation (GI(50)=0.033 microm) predominately through the induction of mitochondrial-mediated apoptosis. We provide evidence that JAK2 inhibition induces apoptosis by direct and indirect regulation of the anti-apoptotic protein BCL-xL. Inhibition of JAK2 blocked BCL-XL mRNA expression resulting in a reduction of BCL-xL protein levels. Additionally, inhibition of JAK2 resulted in decreased PIM1 and PIM2 mRNA expression. Decreased PIM1 mRNA corresponded with a decrease in Pim1 protein levels and inhibition of BAD phosphorylation at Ser(112). Finally, small interfering RNA-mediated suppression of BCL-xL resulted in apoptotic cell death similar to the phenotype observed following JAK2 inhibition. These results suggest a model in which JAK2 promotes cell survival by signaling through the Pim/BAD/BCL-xL pathway.


Asunto(s)
Aminopiridinas/farmacología , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Janus Quinasa 2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Pirazoles/farmacología , Proteína Letal Asociada a bcl/metabolismo , Proteína bcl-X/metabolismo , Apoptosis , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Humanos , Fenotipo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal
19.
Bioorg Med Chem Lett ; 17(24): 6860-3, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17964784

RESUMEN

Isoprenylcysteine methyltransferase (Icmt) catalyzes the carboxyl methylation of oncogenic proteins in the final step of a series of post-translational modifications. The inhibition of Icmt provides an attractive and novel anticancer target. A natural product high-throughput screening campaign was conducted to discover inhibitors of Icmt. The Australian marine sponge, Pseudoceratina sp., yielded spermatinamine, a novel alkaloid with a bromotyrosyl-spermine-bromotyrosyl sequence, as the bioactive constituent. Its structure was determined by 1D and 2D NMR spectroscopy. Spermatinamine is the first natural product inhibitor of Icmt.


Asunto(s)
Antineoplásicos/toxicidad , Productos Biológicos/química , Productos Biológicos/toxicidad , Neoplasias/enzimología , Proteína Metiltransferasas/antagonistas & inhibidores , Espermina/análogos & derivados , Tirosina/análogos & derivados , Antineoplásicos/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Espectroscopía de Resonancia Magnética , Estructura Molecular , Neoplasias/patología , Proteína Metiltransferasas/metabolismo , Espermina/química , Espermina/toxicidad , Tirosina/química , Tirosina/toxicidad
20.
FEBS Lett ; 558(1-3): 69-73, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14759518

RESUMEN

An expression cassette containing mouse U6 polymerase III promoter directing expression of short hairpin RNA (shRNA) targeting murine microsomal glucose-6-phosphatase (G6P) transcript was generated. This construct was packaged into an adenoviral (AdV) backbone and viral stocks generated. Mice injected intravenously with AdV-G6PshRNA exhibited a significant reduction in postprandial glucose levels and had significantly elevated steady-state hepatic glycogen stores. Target gene silencing was confirmed by measurements demonstrating a significant reduction in both hepatic G6P transcript level and phosphohydrolase activity. These findings provide evidence that AdV delivery of expressed shRNA can be a productive tool to explore gene function in vivo.


Asunto(s)
Adenoviridae/genética , Silenciador del Gen , Técnicas de Transferencia de Gen , Glucosa-6-Fosfatasa/metabolismo , MicroARNs , Microsomas Hepáticos/enzimología , Animales , Glucemia/metabolismo , Regulación Enzimológica de la Expresión Génica , Glucosa-6-Fosfatasa/genética , Proteínas Fluorescentes Verdes , Humanos , Células L , Glucógeno Hepático/metabolismo , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA