Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Adv Sci (Weinh) ; : e2403227, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704731

RESUMEN

To effectively treat osteoarthritis (OA), the existing inflammation must be reduced before the cartilage damage can be repaired; this cannot be achieved with a single type of extracellular vesicles (EVs). Here, a hydrogel complex with logic-gates function is proposed that can spatiotemporally controlled release two types of EVs: interleukin 10 (IL-10)+ EVs to promote M2 polarization of macrophage, and SRY-box transcription factor 9 (SOX9)+ EVs to increase cartilage matrix synthesis. Following dose-of-action screening, the dual EVs are loaded into a matrix metalloporoteinase 13 (MMP13)-sensitive self-assembled peptide hydrogel (KM13E) and polyethylene glycol diacrylate/gelatin methacryloyl-hydrogel microspheres (PGE), respectively. These materials are mixed to form a "microspheres-in-gel" KM13E@PGE system. In vitro, KM13E@PGE abruptly released IL-10+ EVs after 3 days and slowly released SOX9+ EVs for more than 30 days. In vivo, KM13E@PGE increased the CD206+ M2 macrophage proportion in the synovial tissue and decreased the tumor necrosis factor-α and IL-1ß levels. The aggrecan and SOX9 expressions in the cartilage tissues are significantly elevated following inflammation subsidence. This performance is not achieved using anti-inflammatory or cartilage repair therapy alone. The present study provides an injectable, integrated delivery system with spatiotemporal control release of dual EVs, and may inspire logic-gates strategies for OA treatment.

2.
Small Methods ; : e2301754, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593371

RESUMEN

The incorporation of engineered muscle-tendon junction (MTJ) with organ-on-a-chip technology provides promising in vitro models for the understanding of cell-cell interaction at the interface between muscle and tendon tissues. However, developing engineered MTJ tissue with biomimetic anatomical interface structure remains challenging, and the precise co-culture of engineered interface tissue is further regarded as a remarkable obstacle. Herein, an interwoven waving approach is presented to develop engineered MTJ tissue with a biomimetic "M-type" interface structure, and further integrated into a precise co-culture microfluidic device for functional MTJ-on-a-chip fabrication. These multiscale MTJ scaffolds based on electrospun nanofiber yarns enabled 3D cellular alignment and differentiation, and the "M-type" structure led to cellular organization and interaction at the interface zone. Crucially, a compartmentalized co-culture system is integrated into an MTJ-on-a-chip device for the precise co-culture of muscle and tendon zones using their medium at the same time. Such an MTJ-on-a-chip device is further served for drug-associated MTJ toxic or protective efficacy investigations. These results highlight that these interwoven nanofibrous scaffolds with biomimetic "M-type" interface are beneficial for engineered MTJ tissue development, and MTJ-on-a-chip with precise co-culture system indicated their promising potential as in vitro musculoskeletal models for drug development and biological mechanism studies.

3.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38675434

RESUMEN

Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS), followed by integrated network analysis to predict potential targets. We then conducted experimental validation using pharmacological assays and metabolomics analysis in a yeast-induced mouse fever model. The study identified 133 compounds in XCHG, resulting in the development of a comprehensive network of herb-compound-biological functional modules. Subsequently, molecular dynamic (MD) simulations confirmed the stability of the complexes, including γ-aminobutyric acid B receptor 2 (GABBR2)-saikosaponin C, prostaglandin endoperoxide synthases (PTGS2)-lobetyolin, and NF-κB inhibitor IκBα (NFKBIA)-glycyrrhizic acid. Animal experiments demonstrated that XCHG reduced yeast-induced elevation in NFKBIA's downstream regulators [interleukin (IL)-1ß and IL-8], inhibited PTGS2 activity, and consequently decreased prostaglandin E2 (PGE2) levels. XCHG also downregulated the levels of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), corticotropin releasing hormone (CRH), and adrenocorticotrophin (ACTH). These corroborated the network analysis results indicating XCHG's effectiveness against fever in targeting NFKBIA, PTGS2, and GABBR2. The hypothalamus metabolomics analysis identified 14 distinct metabolites as potential antipyretic biomarkers of XCHG. In conclusion, our findings suggest that XCHG alleviates yeast-induced fever by regulating inflammation/immune responses, neuromodulation, and metabolism modules, providing a scientific basis for the anti-inflammatory and antipyretic properties of XCHG.

4.
Mol Biotechnol ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637449

RESUMEN

This work was to demonstrate the relationship between serum 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), serum phosphorus (SP), and parathyroid hormone (PTH) and parathyroid function after central lymph node dissection (CLND) in patients with papillary thyroid carcinoma (PTC). 200 PTC patients after CLND were included, who were rolled into a control group (CG) (n = 89 cases without hypoparathyroidism) and an observation group (OG) (n = 111 cases with complicated hypoparathyroidism). The 1,25(OH)2D3, SP, and PTH levels were detected, and the diagnostic effect of these indicators was assessed. The serum PTH levels of patients in CG after surgery were normal relative to those before surgery, while the serum PTH of patients in OG was relatively lower. 1,25(OH)2D3 concentration of patients in OG was also inferior to CG, while the SP level was superior (P < 0.05). Hypoparathyroidism was positively correlated with serum PTH (r = 0.382) and 1,25(OH)2D3 (r = 0.321) and negatively correlated with SP (r = - 0.211). The area under the curve (AUC) (0.893), sensitivity (90.83%), and specificity (94.77%) of the joint diagnosis of 1,25(OH)2D3 + SP + PTH were greatly superior to those of the single diagnosis and the pairwise diagnosis with the three indicators (P < 0.05). Hypoparathyroidism in patients with PTC after CLND surgery was positively correlated with 1,25(OH)2D3 and PTH and negatively correlated with SP concentration. In addition, the combination diagnosis of 1,25(OH)2D3, PTH, and SP worked well.

5.
Antiviral Res ; 223: 105822, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38350497

RESUMEN

Influenza therapeutics with new targets and modes of action are urgently needed due to the frequent emergence of mutants resistant to currently available anti-influenza drugs. Here we report the in vitro and in vivo anti-influenza A virus activities of cyperenoic acid, a natural compound, which was isolated from a Chinese medicine Croton crassifolius Geise. Cyperenoic acid could potently suppress H1N1, H3N2 and H9N2 virus replication with IC50 values ranging from 0.12 to 15.13 µM, and showed a low cytotoxicity against MDCK cells (CC50 = 939.2 ± 60.0 µM), with selectivity index (SI) values ranging from 62 to 7823. Oral or intraperitoneal treatment of cyperenoic acid effectively protected mice against a lethal influenza virus challenge, comparable to the efficacy of Tamiflu. Additionally, cyperenoic acid also significantly reduced lung virus titers and alleviated influenza-induced acute lung injury in infected mice. Mechanism-of-action studies revealed that cyperenoic acid exhibited its anti-influenza activity during the entry stage of viral replication by inhibiting HA-mediated viral fusion. Simulation docking analyses of cyperenoic acid with the HA structures implied that cyperenoic acid binds to the stalk domain of HA in a cavity near the fusion peptide. Collectively, these results demonstrate that cyperenoic acid is a promising lead compound for the anti-influenza drug development and this research provides a useful small-molecule probe for studying the HA-mediated viral entry process.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Sesquiterpenos , Animales , Ratones , Humanos , Subtipo H3N2 del Virus de la Influenza A , Anticuerpos
6.
Phytomedicine ; 126: 155053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359483

RESUMEN

BACKGROUND: Cigarette smoke impairs mucociliary clearance via mechanisms such as inflammatory response and oxidative injury, which in turn induces various respiratory diseases. Naringenin, a naturally occurring flavonoid in grapes and grapefruit, has exhibited pharmacological properties such as anti-inflammatory, expectorant, and antioxidant properties. However, it is still unclear whether naringenin protects airway cilia from injury caused by cigarette smoke. PURPOSE: This study aimed to investigate the effect of naringenin on cigarette smoke extract (CSE)-induced structural and functional abnormalities in airway cilia and highlight the potential regulatory mechanism. METHODS: Initially, network pharmacology was used to predict the mechanism of action of naringenin in ciliary disease. Next, HE staining, immunofluorescence, TEM, qRT-PCR, western blot, and ELISA were performed to assess the effects of naringenin on airway cilia in tracheal rings and air-liquid interface (ALI) cultures of Sprague Dawley rats after co-exposure to CSE (10% or 20%) and naringenin (0, 25, 50, 100 µM) for 24 h. Finally, transcriptomics and molecular biotechnology methods were conducted to elucidate the mechanism by which naringenin protected cilia from CSE-induced damage in ALI cultures. RESULTS: The targets of ciliary diseases regulated by naringenin were significantly enriched in inflammation and oxidative stress pathways. Also, the CSE decreased the number of cilia in the tracheal rings and ALI cultures and reduced the ciliary beat frequency (CBF). However, naringenin prevented CSE-induced cilia damage via mechanisms such as the downregulation of cilia-related genes (e.g., RFX3, DNAI1, DNAH5, IFT88) and ciliary marker proteins such as DNAI2, FOXJ1, and ß-tubulin IV, the upregulation of inflammatory factors (e.g., IL-6, IL-8, IL-13), ROS and MDA. IL-17 signaling pathway might be involved in the protective effect of naringenin on airway cilia. Additionally, the cAMP signaling pathway might also be related to the enhancement of CBF by naringenin. CONCLUSION: In this study, we first found that naringenin reduces CSE-induced structural disruption of airway cilia in part via modulation of the IL-17 signaling pathway. Furthermore, we also found that naringenin enhances CBF by activating the cAMP signaling pathway. This is the first report to reveal the beneficial effects of naringenin on airway cilia and the potential underlying mechanisms.


Asunto(s)
Fumar Cigarrillos , Cilios , Flavanonas , Animales , Ratas , Ratas Sprague-Dawley , Cilios/metabolismo , Interleucina-17/metabolismo , Células Epiteliales
7.
Microorganisms ; 12(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38399736

RESUMEN

Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of SARS-CoV-2 infection, known as long COVID. The effects of long COVID can be far-reaching, with a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocarditis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation. However, recent studies have shown that naringenin and naringin have palliative effects on various COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and vegetables, have various positive effects, including reducing inflammation, preventing viral infections, and providing antioxidants. This article discusses the molecular mechanisms and clinical effects of naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as extended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements for the comprehensive alleviation of the various manifestations of COVID-19 complications.

8.
Phytomedicine ; 124: 155256, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181527

RESUMEN

BACKGROUND: Alveolar macrophages are one of the momentous regulators in pulmonary inflammatory responses, which can secrete extracellular vesicles (EVs) packing miRNAs. Ferroptosis, an iron-dependent cell death, is associated with cigarette smoke-induced lung injury, and EVs have been reported to regulate ferroptosis by transporting intracellular iron. However, the regulatory mechanism of alveolar macrophage-derived EVs has not been clearly illuminated in smoking-related pulmonary ferroptosis. Despite the known anti-ferroptosis effects of naringenin in lung injury, whether naringenin controls EVs-mediated ferroptosis has not yet been explored. PURPOSE: We explore the effects of EVs from cigarette smoke-stimulated alveolar macrophages in lung epithelial ferroptosis, and elucidate the EV miRNA-mediated pharmacological mechanism of naringenin. STUDY DESIGN AND METHODS: Differential and ultracentrifugation were conducted to extract EVs from different alveolar macrophages treatment groups in vitro. Both intratracheal instilled mice and treated epithelial cells were used to investigate the roles of EVs from alveolar macrophages involved in ferroptosis. Small RNA sequencing analysis was performed to distinguish altered miRNAs in EVs. The ferroptotic effects of EV miRNAs were examined by applying dual-Luciferase reporter assay and miRNA inhibitor transfection experiment. RESULTS: Here, we firstly reported that EVs from cigarette smoke extract-induced alveolar macrophages (CSE-EVs) provoked pulmonary epithelial ferroptosis. The ferroptosis inhibitor ferrostatin-1 treatment reversed these changes in vitro. Moreover, EVs from naringenin and CSE co-treated alveolar macrophages (CSE+Naringenin-EVs) markedly attenuated the lung epithelial ferroptosis compared with CSE-EVs. Notably, we identified miR-23a-3p as the most dramatically changed miRNA among Normal-EVs, CSE-EVs, and CSE+Naringenin-EVs. Further experimental investigation showed that ACSL4, a pro-ferroptotic gene leading to lipid peroxidation, was negatively regulated by miR-23a-3p. The inhibition of miR-23a-3p diminished the efficacy of CSE+Naringenin-EVs. CONCLUSION: Our findings firstly provided evidence that naringenin elevated the EV miR-23a-3p level from CSE-induced alveolar macrophages, thereby inhibiting the mouse lung epithelial ferroptosis via targeting ACSL4, and further complemented the mechanism of cigarette-induced lung injury and the protection of naringenin in a paracrine manner. The administration of miR-23a-3p-enriched EVs has the potential to ameliorate pulmonary ferroptosis.


Asunto(s)
Fumar Cigarrillos , Vesículas Extracelulares , Ferroptosis , Flavanonas , Lesión Pulmonar , MicroARNs , Ratones , Animales , Macrófagos Alveolares/metabolismo , Fumar Cigarrillos/efectos adversos , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Hierro/metabolismo
9.
iScience ; 26(8): 107349, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37539040

RESUMEN

Articular cartilage tissue engineering is being considered an alternative treatment strategy for promoting cartilage damage repair. Herein, we proposed a modular hydrogel-based bioink containing microsphere-embedded chondrocytes for 3D printing multiscale scaffolds integrating the micro and macro environment of the native articular cartilage. Gelatin methacryloyl (GelMA)/alginate microsphere was prepared by a microfluidic approach, and the chondrocytes embedded in the microspheres remained viable after being frozen and resuscitated. The modular hydrogel bioink could be printed via the gel-in-gel 3D bioprinting strategy for fabricating the multiscale hydrogel-based scaffolds. Meanwhile, the cells cultured in the scaffolds showed good proliferation and differentiation. Furthermore, we also found that the composite hydrogel was biocompatible in vivo. These results indicated that the modular hydrogel-based bioinks containing microsphere-embedded chondrocytes for 3D printing multiscale scaffolds could provide a 3D multiscale environment for enhancing cartilage repairing, which would be encouraging considering the numerous alternative applications in articular cartilage tissue engineering.

10.
Phytomedicine ; 115: 154843, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37149966

RESUMEN

BACKGROUND: Chinese herbal formulae has multiple active constituents and targets, and the good clinical response is encouraging more scientists to explore the bio-active ingredients in such complex systems. Yi-Fei-San-Jie formula (YFSJF) is commonly used to treat patients with lung cancer in South China; however, its bio-active ingredients remain unknown. PURPOSE: We investigated the bio-active ingredients of the YFSJF using a novel comprehensive strategy. METHODS: A549 cell extraction coupled with ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS) was used for the screening of potential bio-active ingredients. Network pharmacology approach and molecular dynamics simulation were performed for the screening of targets. Surface plasmon resonance (SPR) assay and molecular biology techniques were used to verify the targets. RESULTS: Nine A549 cell membrane-binding compounds were identified through cell extraction/UPLC-MS/MS. Five compounds, namely ginsenoside Ro, ginsenoside Rb1, ginsenoside Rc, peimisine, and peimine were cytotoxic to A549 cells, and they were considered the bio-active ingredients of the YFSJF in vitro. Network pharmacology analysis revealed that TGFBR2 is the key target and the TGFß pathway is the key pathway targeted by YFSJF in non-small cell lung cancer. Peimisine showed an affinity to TGFBR2 using molecular docking and dynamic stimulation, which was confirmed using surface plasmon resonance spectroscopy. The molecular biology-based analysis further confirmed that peimisine targets TGFBR2 and can reverse A549 epithelial-mesenchymal transition by inhibiting the TGFß pathway. CONCLUSION: Taken together, cell extraction/UPLC-MS/MS, network pharmacology, and molecular biology-based analysis comprise a feasible strategy to explore active ingredients in YFSJF.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptor Tipo II de Factor de Crecimiento Transformador beta , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/farmacología
11.
Front Pharmacol ; 14: 1112610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138845

RESUMEN

Porcine epidemic diarrhea virus (PEDV) infection causes lethal watery diarrhea and high mortality in neonatal piglets, leading to huge economic losses in the global swine industry. Currently, the existing commercial vaccines cannot fully control PEDV, so it is urgent to develop effective antiviral agents to complement vaccine therapy. In the present study, we investigated the antiviral effect of Hypericum japonicum extract (HJ) against PEDV in vivo and in vitro. In in vitro assays, HJ could directly inactivate PEDV strains; moreover, it inhibited the proliferation of PEDV strains in Vero or IPI-FX cells at its non-cytotoxic concentrations. Time of addition assays revealed that HJ mainly inhibited PEDV at the later stages of the viral life cycle. In in vivo, compared with the model group, HJ could reduce the viral titers in the intestines of infected piglets, and improve their intestinal pathological, indicating that HJ could protect the newborn piglets from highly pathogenic PEDV variant infection. Furthermore, this effect may be related to the fact that HJ can not only directly inhibit viruses, but also regulate the structure of intestinal microbiota. In conclusion, our results indicate that Hypericum japonicum could inhibit PEDV replication in vitro and in vivo and might possess the potential to develop as the anti-PEDV drug.

12.
Chin Med ; 18(1): 48, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143094

RESUMEN

BACKGROUND: Cold-dampness Syndrome (RA-Cold) and Hot-dampness Syndrome (RA-Hot) are two distinct groups of rheumatoid arthritis (RA) patients with different clinical symptoms based on traditional Chinese medicine (TCM) theories and clinical empirical knowledge. However, the biological basis of the two syndromes has not been fully elucidated, which may restrict the development of personalized medicine and drug discovery for RA diagnosis and therapy. METHODS: An integrative strategy combining clinical transcriptomics, phenomics, and metabolomics data based on clinical cohorts and adjuvant-induced arthritis rat models was performed to identify novel candidate biomarkers and to investigate the biological basis of RA-Cold and RA-Hot. RESULTS: The main clinical symptoms of RA-Cold patients are joint swelling, pain, and contracture, which may be associated with the dysregulation of T cell-mediated immunity, osteoblast differentiation, and subsequent disorders of steroid biosynthesis and phenylalanine metabolism. In contrast, the main clinical symptoms of RA-Hot patients are fever, irritability, and vertigo, which may be associated with various signals regulating angiogenesis, adrenocorticotropic hormone release, and NLRP3 inflammasome activation, leading to disorders of steroid biosynthesis, nicotinamide, and sphingolipid metabolism. IL17F, 5-HT, and IL4I1 were identified as candidate biomarkers of RA-Cold, while S1P and GLNS were identified as candidate biomarkers of RA-Hot. CONCLUSIONS: The current study presents the most comprehensive metabonomic and transcriptomic profiling of serum, urine, synovial fluid, and synovial tissue samples obtained from RA-Cold and RA-Hot patients and experimental animal models to date. Through the integration of multi-omics data and clinical independent validation, a list of novel candidate biomarkers of RA-Cold and RA-Hot syndromes were identified, that may be useful in improving RA diagnosis and therapy.

13.
ACS Omega ; 8(12): 11184-11191, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008121

RESUMEN

Coal is a naturally discontinuous, heterogeneous, and anisotropic brittle material. The uniaxial compressive strength of coals is significantly affected by the sample size-dominated microstructure of minerals and fractures. The scale effect of the mechanical properties of coal is a bridge connecting the mechanical parameters of laboratory-scale coal samples and engineering-scale coal. The scale effect of coal strength is of great significance in explaining the fracturing law of the coal seam and reveal the mechanism of coal and gas outburst disaster. The uniaxial compressive strength of outburst-prone coal samples with different scale sizes was tested, the variation law of uniaxial compressive strength with increasing scale was analyzed, and the mathematical models of both were constructed. The results show that the average compressive strength and elastic modulus of outburst coal decrease exponentially with the increase in scale size, and the decrease rate is reduced. The average compressive strength of the tested coal samples decreased from 10.4 MPa for size 60 × 30 × 30 mm3 to 1.9 MPa for scale 200 × 100 × 100 mm3, which decreases by 81.4%.

14.
J Ethnopharmacol ; 307: 116240, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36764560

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The regulation of epigenetic factors is considered a crucial target for solving complex chronic diseases such as cardio-cerebrovascular diseases. HuangqiGuizhiWuwu Decoction (HGWWD), a classic Chinese prescription, is mainly used to treat various vascular diseases. Although our previous studies reported that HGWWD could effectively prevent vascular dysfunction in diabetic rodent models, the precise mechanism is still elusive. AIM OF THE STUDY: In this study, we investigated the epigenetic mechanisms of modulating the damage of vascular endothelial cells in diabetes by HGWWD. METHODS: We first analyzed common active components of HGWWD by using HPLC-Q-TOF-MS/MS analysis, and predicted the isoforms of histone deacetylase (HDAC) that can potentially combine the above active components by systems pharmacology. Next, we screened the involvement of specific HDAC isoforms in the protective effect of HGWWD on vascular injury by using pharmacological blockade combined with the evaluation of vascular function in vivo and in vitro. RESULTS: Firstly, HDAC1, HDAC2, HDAC3, HDAC4, HDAC6, HDAC7, SIRT2, and SIRT3 have been implicated with the possibility of binding to the thirty-one common active components in HGWWD. Furthermore, the protective effect of HGWWD is reversed by both TSA (HDAC inhibitor) and MC1568 (class II HDAC inhibitor) on vascular impairment accompanied by reduced aortic HDAC activity in STZ mice. Finally, inhibition of HDAC4 blocked the protective effect of HGWWD on microvascular and endothelial dysfunction in diabetic mice. CONCLUSIONS: These results prove the key role of HDAC4 in diabetes-induced microvascular dysfunction and underlying epigenetic mechanisms for the protective effect of HGWWD in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Enfermedades Vasculares , Ratones , Animales , Inhibidores de Histona Desacetilasas/farmacología , Células Endoteliales/metabolismo , Microcirculación , Espectrometría de Masas en Tándem , Histona Desacetilasas/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-36654811

RESUMEN

Non-small-cell lung cancer (NSCLC) is one of the most prevalent cancers worldwide. A Yi-Fei-San-Jie formula (YFSJF), widely used in NSCLC treatment in south China, has been validated in clinical studies. However, the pharmacological mechanism behind it remains unclear. In this study, 73 compounds were identified using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), with 58 enrolled in network pharmacology. The protein-protein interaction network, functional enrichment analysis, and compound-target-pathway network were constructed using 74 overlapping targets from 58 drugs and NSCLC. YFSJF has many targets and pathways in the fight against NSCLC. PIK3R1, PIK3CA, and AKT1 were identified as key targets, and the PI3K/AKT pathway was identified as the key pathway. According to the Human Protein Atlas (THPA) database and the Kaplan-Meier Online website, the three key targets had varying expression levels in normal and abnormal tissues and were linked to prognosis. Molecular docking and dynamics simulations verified that hub compounds have a strong affinity with three critical targets. This study revealed multiple compounds, targets, and pathways for YFSJF against NSCLC and suggested that YFSJF might inhibit PIK3R1, PIK3CA, and AKT1 to suppress the PI3K/AKT pathway and play its pharmacological role.

16.
Diagn Microbiol Infect Dis ; 105(2): 115865, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36521211

RESUMEN

This research aimed to explore the clinical value of C-reactive protein (CRP), procalcitonin (PCT), and serum amyloid A (SAA) in early diagnosis of bacterial pneumonia. CRP, PCT, and SAA levels of children with bacterial pneumonia, children with non-bacterial pneumonia, and healthy children were compared. The sensitivity and specificity of CRP, PCT, and SAA in the diagnosis of bacterial pneumonia in children were compared. CRP, PCT, and SAA levels were significantly lower in healthy children when compared with children with Community acquired pneumonia (CAP). ROC analyses showed that CRP, PCT, and SAA all had good accuracy in distinguishing bacterial pneumonia from non-bacterial pneumonia. The combination of CRP, PCT, and SAA further enhanced the accuracy in distinguishing bacterial pneumonia from non-bacterial pneumonia. In conclusion, the expression levels of CRP, PCT, and SAA could indicate the status of bacterial pneumonia. The combined test of CRP, PCT, and SAA had the highest diagnostic accuracy.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía Bacteriana , Niño , Humanos , Biomarcadores , Proteína C-Reactiva/análisis , Calcitonina , Péptido Relacionado con Gen de Calcitonina , Infecciones Comunitarias Adquiridas/diagnóstico , Diagnóstico Diferencial , Neumonía Bacteriana/diagnóstico , Polipéptido alfa Relacionado con Calcitonina , Precursores de Proteínas , Curva ROC , Proteína Amiloide A Sérica/análisis , Proteína Amiloide A Sérica/metabolismo
17.
Acta Biomater ; 157: 321-336, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481504

RESUMEN

Bone marrow mesenchymal stromal cell-derived exosomes (BMSC-Exos) can recruit stem cells for bone repair, with neovessels serving as the main migratory channel for stem cells to the injury site. However, existing exosome (Exo) delivery strategies cannot reach the angiogenesis phase following bone injury. To that end, an enzyme-sensitive Exo delivery material that responds to neovessel formation during the angiogenesis phase was designed in the present study to achieve spatiotemporally controlled Exo release. Herein, matrix metalloproteinase-1 (MMP1) was found to be highly expressed in neovascularized bone; as a result, we proposed an injectable MMP1-sensitive hydrogel microspheres (KGE) made using a microfluidic chip prepared by mixing self-assembling peptide (KLDL-MMP1), GelMA, and BMSC-Exos. The results revealed that KGE microspheres had a uniform diameter of 50-70 µm, ideal for minimally invasive injection and could release exosomes in response to MMP1 expression. In vitro experiments demonstrated that KGE had less cytotoxicity and could promote the migration and osteodifferentiation of BMSCs. Furthermore, in vivo experiments confirmed that KGE could promote bone repair during angiogenesis by recruiting CD90+ stem cells via neovessels. Collectively, our results suggest that injectable enzyme-responsive KGE microspheres could be a promising Exo-secreting material for accelerating neovascularized bone healing. STATEMENT OF SIGNIFICANCE: Exosomes can spread through blood vessels and activate stem cells to participate in bone repair, but under normal circumstances, exosomes lacking sustained-release delivery materials cannot be maintained until the angiogenesis phase. In this study, we found that MMP1 was highly expressed in neovascularized bone, then we proposed an MMP1-sensitive injectable microsphere that carries exosomes and responds temporally and spatially to neovascularization, which maximizes the ability of exosomes to recruit stem cells. Different from previous strategies that focus on promoting angiogenesis to accelerate bone healing, this is a brand new delivery strategy that is stimuli-responsive to neovessel formation. In addition, the preparation of self-assembled peptide microspheres by a microfluidic chip is also proposed for the first time.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Metaloproteinasa 1 de la Matriz/metabolismo , Microesferas , Exosomas/metabolismo
18.
Afr Health Sci ; 23(2): 290-297, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38223626

RESUMEN

Objective: To study the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in combination with mammography for screening early-stage breast cancer. Methods: Ninety-three female patients visiting Zhejiang Zhuji Hospital of Traditional Chinese Medicine from January 2020 to March 2022 were enrolled to receive DCE-MRI and mammography. The diagnostic efficiencies of different methods were assessed with pathological diagnosis as the golden standard. The factors affecting diagnostic sensitivity were investigated based on clinicopathological characteristics. Results: Forty-one patients were diagnosed as malignant pathological changes by DCE-MRI, and the signs were unclear boundary with surrounding tissues and irregular or unsmooth edges. The maximum linear slope and ratio of the maximum linear SlopeR of malignant pathological changes were significantly larger than those of benign pathological changes (P<0.05). Forty-five patients were diagnosed as malignant pathological changes by mammography combined with DCE-MRI. Compared to single diagnosis method, the combined diagnosis had significantly increased sensitivity, specificity, accuracy, positive predictive value and negative predictive value, and decreased rates of missed diagnosis and misdiagnosis (P<0.05). Lesion diameter was an independent risk factor affecting the diagnostic sensitivity (P<0.05). Conclusion: Mammography and DCE-MRI play key roles in the early diagnosis of breast cancer, and their combination can increase the diagnostic efficiency.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Mama/diagnóstico por imagen , Detección Precoz del Cáncer , Medios de Contraste , Mamografía/métodos , Imagen por Resonancia Magnética/métodos , Sensibilidad y Especificidad , Estudios Retrospectivos
19.
Biomater Sci ; 11(1): 278-287, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36444682

RESUMEN

Retinal pigment epithelial (RPE) cell transplantation is being explored as a feasible approach for treating age-related macular degeneration. The low aggregation ability of RPE cell suspensions or microtissues after transplantation has limited cell utilisation. Therefore, alternative transplantation strategies should be explored to induce cell aggregation and maintain cell viability. Herein, we propose a composite hydrogel that encapsulates gelatin methacryloyl (GelMA)/chitosan microspheres (GCMSs) as ARPE-19 cell transplantation carriers. The diameter of the GCMS was adjusted by tuning the parameters of the microfluidic devices, yielding a cell-adhering platform that induced uniform cell spreading. The live/dead assay and immunofluorescence results showed that ARPE-19 cells adhered and spread uniformly around the microspheres. Moreover, the hydrogel sheets were used to provide an aggregated protective shell, and the ARPE-19 cells on the microspheres encapsulated within these hydrogel sheets remained viable post-injection and produced fewer reactive oxygen species after cyclic stretching. Furthermore, we found that the composite hydrogel was biodegradable and biocompatible in vivo. Therefore, GCMSs provide an injectable microcarrier for ARPE-19 cells, and the hydrogel provides an aggregated protective shell in this novel platform, which has considerable potential for an alternative injectable and highly aggregated RPE cell transplantation strategy design.


Asunto(s)
Quitosano , Hidrogeles , Microesferas , Gelatina , Trasplante de Células
20.
Life Sci ; 311(Pt A): 121127, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36306867

RESUMEN

With the wide application of silver nanoparticles (AgNPs), their potential damage to human health needs to be investigated. Lung is one of the main target organs after inhalation of AgNPs. Naringenin has been reported to have anti-inflammatory and anti-oxidative properties. This study aims to evaluate the protective effects of naringenin against AgNPs-induced lung injury and determine the underlying mechanism. In in vivo experiments, AgNPs were intratracheally instilled into ICR mice (l mg/kg) to establish a lung injury model. These mice were then treated with naringenin by oral gavage (25, 50, 100 mg/kg) for three days. Naringenin treatment decreased the levels of white blood cells, neutrophils, and lymphocytes in the blood, ameliorated lung injury, suppressed the release of pro-inflammatory cytokines, normalized ferroptotic markers and prevented oxidative stress with elevating Nrf2 and HO-1 protein expressions in lung. In in vitro experiments, BEAS-2B cells were firstly treated with AgNPs (320 µg/mL) and then naringenin (25, 50, and 100 µM), respectively. Naringenin attenuated AgNPs-induced oxidative stress and inflammatory response. Moreover, naringenin attenuated AgNPs-induced apoptosis with modulated low BAX, CytC, cleaved Caspase9, cleaved Caspase3 but high Bcl2. Furthermore, naringenin effectively decreased ferroptotic markers and increased the protein expressions of Nrf2 and HO-1, as well as increased the nuclear translocation of Nrf2. Importantly, the anti-apoptotic and anti-ferroptotic effects of naringenin in BEAS-2B cells were found to be at least partially Nrf2-dependent. These results indicated that naringenin exerted anti-inflammation, anti-apoptosis, and anti-ferroptosis effects and protected against AgNPs-induced lung injury at least partly via activating Nrf2/HO-1 signaling pathway.


Asunto(s)
Lesión Pulmonar , Nanopartículas del Metal , Animales , Humanos , Ratones , Antiinflamatorios/farmacología , Hemo-Oxigenasa 1/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/prevención & control , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Plata/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA