Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2403796121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809710

RESUMEN

Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-ß and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/ß levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-ß mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-ß responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.


Asunto(s)
Interferón Tipo I , Malaria , Plasmodium yoelii , Receptores Odorantes , Animales , Ratones , Malaria/inmunología , Malaria/parasitología , Malaria/metabolismo , Humanos , Células HEK293 , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Ratones Noqueados , Transducción de Señal , Ratones Endogámicos C57BL
2.
Parasit Vectors ; 17(1): 238, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802937

RESUMEN

BACKGROUND: Eukaryotic genes contain introns that are removed by the spliceosomal machinery during mRNA maturation. Introns impose a huge energetic burden on a cell; therefore, they must play an essential role in maintaining genome stability and/or regulating gene expression. Many genes (> 50%) in Plasmodium parasites contain predicted introns, including introns in 5' and 3' untranslated regions (UTR). However, the roles of UTR introns in the gene expression of malaria parasites remain unknown. METHODS: In this study, an episomal dual-luciferase assay was developed to evaluate gene expression driven by promoters with or without a 5'UTR intron from four Plasmodium yoelii genes. To investigate the effect of the 5'UTR intron on endogenous gene expression, the pytctp gene was tagged with 3xHA at the N-terminal of the coding region, and parasites with or without the 5'UTR intron were generated using the CRISPR/Cas9 system. RESULTS: We showed that promoters with 5'UTR introns had higher activities in driving gene expression than those without 5'UTR introns. The results were confirmed in recombinant parasites expressing an HA-tagged gene (pytctp) driven by promoter with or without 5'UTR intron. The enhancement of gene expression was intron size dependent, but not the DNA sequence, e.g. the longer the intron, the higher levels of expression. Similar results were observed when a promoter from one strain of P. yoelii was introduced into different parasite strains. Finally, the 5'UTR introns were alternatively spliced in different parasite development stages, suggesting an active mechanism employed by the parasites to regulate gene expression in various developmental stages. CONCLUSIONS: Plasmodium 5'UTR introns enhance gene expression in a size-dependent manner; the presence of alternatively spliced mRNAs in different parasite developmental stages suggests that alternative slicing of 5'UTR introns is one of the key mechanisms in regulating parasite gene expression and differentiation.


Asunto(s)
Regiones no Traducidas 5' , Intrones , Plasmodium yoelii , Regiones Promotoras Genéticas , Regiones no Traducidas 5'/genética , Intrones/genética , Plasmodium yoelii/genética , Plasmodium yoelii/crecimiento & desarrollo , Animales , Expresión Génica , Ratones , Regulación de la Expresión Génica , Sistemas CRISPR-Cas
3.
Nat Commun ; 15(1): 1774, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413566

RESUMEN

Mutations in a Plasmodium de-ubiquitinase UBP1 have been linked to antimalarial drug resistance. However, the UBP1-mediated drug-resistant mechanism remains unknown. Through drug selection, genetic mapping, allelic exchange, and functional characterization, here we show that simultaneous mutations of two amino acids (I1560N and P2874T) in the Plasmodium yoelii UBP1 can mediate high-level resistance to mefloquine, lumefantrine, and piperaquine. Mechanistically, the double mutations are shown to impair UBP1 cytoplasmic aggregation and de-ubiquitinating activity, leading to increased ubiquitination levels and altered protein localization, from the parasite digestive vacuole to the plasma membrane, of the P. yoelii multidrug resistance transporter 1 (MDR1). The MDR1 on the plasma membrane enhances the efflux of substrates/drugs out of the parasite cytoplasm to confer multidrug resistance, which can be reversed by inhibition of MDR1 transport. This study reveals a previously unknown drug-resistant mechanism mediated by UBP1 through altered MDR1 localization and substrate transport direction in a mouse model, providing a new malaria treatment strategy.


Asunto(s)
Antimaláricos , Endopeptidasas , Malaria Falciparum , Plasmodium yoelii , Animales , Ratones , Plasmodium yoelii/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Antimaláricos/uso terapéutico , Resistencia a Múltiples Medicamentos/genética , Resistencia a Medicamentos/genética
4.
mBio ; : e0234623, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874152

RESUMEN

Cerebral malaria (CM) is a severe neurological complication of Plasmodium falciparum infection with acute brain lesions. Genetic variations in both host and parasite have been associated with susceptibility to CM, but the underlying molecular mechanism remains unclear. Here, we demonstrate that variants of human apolipoprotein E (hApoE) impact the outcome of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM). Mice carrying the hApoE2 isoform have fewer intracerebral hemorrhages and are more resistant to ECM than mice bearing the hApoE3, hApoE4, or endogenous murine ApoE (mApoE). hApoE2 mice infected with PbA showed increased splenomegaly and IFN-γ levels in serum but reduced cerebral cell apoptosis that correlated with the survival advantage against ECM. In addition, upregulated expression of genes associated with lipid metabolism and downregulated expression of genes linked to immune responses were observed in the brain tissue of hApoE2 mice relative to ECM-susceptible mice after PbA infection. Notably, serum cholesterol and the cholesterol content of brain-infiltrating CD8+ T cells are significantly higher in infected hApoE2 mice, which might contribute to a significant reduction in the sequestration of brain CD8+ T cells. Consistent with the finding that fewer brain lesions occurred in infected hApoE2 mice, fewer behavioral deficits were observed in the hApoE2 mice. Finally, a meta-analysis of publicly available data also showed an increased hApoE2 allele in the malaria-endemic African population, suggesting malaria selection. This study shows that hApoE2 protects mice from ECM through suppression of CD8+ T cell activation and migration to the brain and enhanced cholesterol metabolism.IMPORTANCECerebral malaria (CM) is the deadliest complication of malaria infection with an estimated 15%-25% mortality. Even with timely and effective treatment with antimalarial drugs such as quinine and artemisinin derivatives, survivors of CM may suffer long-term cognitive and neurological impairment. Here, we show that human apolipoprotein E variant 2 (hApoE2) protects mice from experimental CM (ECM) via suppression of CD8+ T cell activation and infiltration to the brain, enhanced cholesterol metabolism, and increased IFN-γ production, leading to reduced endothelial cell apoptosis, BBB disruption, and ECM symptoms. Our results suggest that hApoE can be an important factor for risk assessment and treatment of CM in humans.

5.
Proc Natl Acad Sci U S A ; 120(40): e2311557120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748059

RESUMEN

Plasmodium parasites cause malaria with disease outcomes ranging from mild illness to deadly complications such as severe malarial anemia (SMA), pulmonary edema, acute renal failure, and cerebral malaria. In young children, SMA often requires blood transfusion and is a major cause of hospitalization. Malaria parasite infection leads to the destruction of infected and noninfected erythrocytes as well as dyserythropoiesis; however, the mechanism of dyserythropoiesis accompanied by splenomegaly is not completely understood. Using Plasmodium yoelii yoelii 17XNL as a model, we show that both a defect in erythroblastic island (EBI) macrophages in supporting red blood cell (RBC) maturation and the destruction of reticulocytes/RBCs by the parasites contribute to SMA and splenomegaly. After malaria parasite infection, the destruction of both infected and noninfected RBCs stimulates extramedullary erythropoiesis in mice. The continuous decline of RBCs stimulates active erythropoiesis and drives the expansion of EBIs in the spleen, contributing to splenomegaly. Phagocytosis of malaria parasites by macrophages in the bone marrow and spleen may alter their functional properties and abilities to support erythropoiesis, including reduced expression of the adherence molecule CD169 and inability to support erythroblast differentiation, particularly RBC maturation in vitro and in vivo. Therefore, macrophage dysfunction is a key mechanism contributing to SMA. Mitigating and/or alleviating the inhibition of RBC maturation may provide a treatment strategy for SMA.


Asunto(s)
Anemia , Malaria Cerebral , Plasmodium yoelii , Niño , Humanos , Animales , Ratones , Preescolar , Eritropoyesis , Esplenomegalia , Eritrocitos , Macrófagos
6.
mBio ; 14(4): e0351222, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37366613

RESUMEN

Stringent control of the type I interferon (IFN-I) signaling is critical for host immune defense against infectious diseases, yet the molecular mechanisms that regulate this pathway remain elusive. Here, we show that Src homology 2 containing inositol phosphatase 1 (SHIP1) suppresses IFN-I signaling by promoting IRF3 degradation during malaria infection. Genetic ablation of Ship1 in mice leads to high levels of IFN-I and confers resistance to Plasmodium yoelii nigeriensis (P.y.) N67 infection. Mechanistically, SHIP1 promotes the selective autophagic degradation of IRF3 by enhancing K63-linked ubiquitination of IRF3 at lysine 313, which serves as a recognition signal for NDP52-mediated selective autophagic degradation. In addition, SHIP1 is downregulated by IFN-I-induced miR-155-5p upon P.y. N67 infection and severs as a feedback loop of the signaling crosstalk. This study reveals a regulatory mechanism between IFN-I signaling and autophagy, and verifies SHIP1 can be a potential target for therapeutic intervention against malaria and other infectious diseases. IMPORTANCE Malaria remains a serious disease affecting millions of people worldwide. Malaria parasite infection triggers tightly controlled type I interferon (IFN-I) signaling that plays a critical role in host innate immunity; however, the molecular mechanisms underlying the immune responses are still elusive. Here, we discover a host gene [Src homology 2-containing inositol phosphatase 1 (SHIP1)] that can regulate IFN-I signaling by modulating NDP52-mediated selective autophagic degradation of IRF3 and significantly affect parasitemia and resistance of Plasmodium-infected mice. This study identifies SHIP1 as a potential target for immunotherapies in malaria and highlights the crosstalk between IFN-I signaling and autophagy in preventing related infectious diseases. SHIP1 functions as a negative regulator during malaria infection by targeting IRF3 for autophagic degradation.

7.
Antimicrob Agents Chemother ; 67(2): e0082122, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36625569

RESUMEN

Protein ubiquitination is an important posttranslational regulation mechanism that mediates Plasmodium development and modifies parasite responses to antimalarial drugs. Although mutations in several parasite ubiquitination enzymes have been linked to increased drug tolerance, the molecular mechanisms by which ubiquitination pathways mediate these parasite responses remain largely unknown. Here, we investigate the roles of a Plasmodium falciparum ring finger ubiquitin ligase (PfRFUL) in parasite development and in responses to antimalarial drugs. We engineered a transgenic parasite having the Pfrful gene tagged with an HA-2A-NeoR-glmS sequence to knockdown (KD) Pfrful expression using glucosamine (GlcN). A Western blot analysis of the proteins from GlcN-treated pSLI-HA-NeoR-glmS-tagged (PfRFULg) parasites, relative to their wild-type (Dd2) controls, showed changes in the ubiquitination of numerous proteins. PfRFUL KD rendered the parasites more sensitive to multiple antimalarial drugs, including mefloquine, piperaquine, amodiaquine, and dihydroartemisinin. PfRFUL KD also decreased the protein level of the P. falciparum multiple drug resistance 1 protein (PfMDR1) and altered the ratio of two bands of the P. falciparum chloroquine resistance transporter (PfCRT), suggesting contributions to the changed drug responses by the altered ubiquitination of these two molecules. The inhibition of proteasomal protein degradation by epoxomicin increased the PfRFUL level, suggesting the degradation of PfRFUL by the proteasome pathways, whereas the inhibition of E3 ubiquitin ligase activities by JNJ26854165 reduced the PfRFUL level. This study reveals the potential mechanisms of PfRFUL in modifying the expression of drug transporters and their roles in parasite drug responses. PfRFUL could be a potential target for antimalarial drug development.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Proteínas Protozoarias , Ubiquitina-Proteína Ligasas , Humanos , Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Malar J ; 21(1): 333, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380373

RESUMEN

BACKGROUND: To understand how Plasmodium falciparum malaria is controlled, it is essential to elucidate the transcriptomic responses of the human host in naturally-exposed populations. Various individual studies of the human transcriptomic responses to naturally transmitted P. falciparum infections have been reported with varying results. Multicohort gene expression analysis by aggregating data from diverse populations into a single analysis will increase the reproducibility and reliability of the results. METHODS: In this study, discovery cohorts GSE1124-GPL96, GSE34404, GSE117613, and validation cohort GSE35858 were obtained from the Gene Expression Omnibus. A meta-analysis using data from the multicohort studies was performed to identify the differentially expressed genes (DEGs) between malaria-infected and noninfected individuals using the MetaIntegrator R package. Subsequently, the protein-protein interaction (PPI) networks of the DEGs were constructed using Cytoscape software. Significant modules were selected, and the hub genes were identified using the CytoHubba and MCODE plug-ins. Multicohort WGCNA was conducted to find a correlation between modules and malaria infection. Furthermore, the immune cell profile of the peripheral blood in different groups was identified using ssGSEA. RESULTS: These analyses reveal that neutrophil activation, neutrophil-mediated immunity, and neutrophil degranulation are involved in the human response to natural malaria infection. However, neutrophil cell enrichment and activation were not significantly different between mild malaria and severe malaria groups. Malaria infection also downregulates host genes in ribosome synthesis and protein translation and upregulates host cell division-related genes. Furthermore, immune cell profiling analysis shows that activated dendritic cells and type 2 T helper cells are upregulated, while activated B cells, immature B cells, and monocytes are downregulated in the malaria-infected patients relative to the noninfected individuals. Significantly higher enrichment of activated dendritic cell-related genes and significantly lower enrichment of monocyte-related genes are also observed in the peripheral blood of the severe malaria group than in the mild malaria group. CONCLUSION: These results reveal important molecular signatures of host responses to malaria infections, providing some bases for developing malaria control strategies and protective vaccines.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Plasmodium falciparum/genética , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica , Transcriptoma
9.
Front Immunol ; 13: 998756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203583

RESUMEN

N6 -Methyladenosine (m6A), the most abundant mammalian mRNA modification, has been reported to modulate various viral infections. Although it has been confirmed that RNA modifications can also modulate the replication and development of different parasites, the role of the RNA epitranscriptome in the regulation of host response post parasite infection remains to be elucidated. Here we report host spleen m6A epitranscriptome landscapes induced by different strains of the malaria parasite Plasmodium yoelii. We found that malaria parasite infection dramatically changes host spleen m6A mRNA modification and gene expression. Additionally, malaria parasite infection reprograms host immune response pathways by regulating the m6A modification enzymes. Collectively, our study is the first characterization of host spleen m6A methylome triggered by malaria parasite infections, and our data identify m6A modifications as significant transcriptome-wide marks during host-parasite interactions. We demonstrate that host mRNA methylation machinery can sense and respond to malaria parasite infections, and provide new insights into epitranscriptomic mechanisms underlying parasite-induced pathogenesis.


Asunto(s)
Malaria , Plasmodium yoelii , Animales , Inmunidad , Mamíferos/genética , Metilación , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Bazo/metabolismo
10.
Parasitol Int ; 91: 102636, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35926694

RESUMEN

Rodent malaria parasites have been widely used in all aspects of malaria research to study parasite development within rodent and insect hosts, drug resistance, disease pathogenesis, host immune response, and vaccine efficacy. Rodent malaria parasites were isolated from African thicket rats and initially characterized by scientists at the University of Edinburgh, UK, particularly by Drs. Richard Carter, David Walliker, and colleagues. Through their efforts and elegant work, many rodent malaria parasite species, subspecies, and strains are now available. Because of the ease of maintaining these parasites in laboratory mice, genetic crosses can be performed to map the parasite and host genes contributing to parasite growth and disease severity. Recombinant DNA technologies are now available to manipulate the parasite genomes and to study gene functions efficiently. In this chapter, we provide a brief history of the isolation and species identification of rodent malaria parasites. We also discuss some recent studies to further characterize the different developing stages of the parasites including parasite genomes and chromosomes. Although there are differences between rodent and human malaria parasite infections, the knowledge gained from studies of rodent malaria parasites has contributed greatly to our understanding of and the fight against human malaria.


Asunto(s)
Malaria , Parásitos , Plasmodium yoelii , Plasmodium , Animales , Humanos , Malaria/parasitología , Ratones , Plasmodium/genética , Plasmodium berghei/genética , Plasmodium yoelii/genética , Ratas , Roedores
11.
Parasitol Int ; 91: 102637, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35926693

RESUMEN

Genetic mapping has been widely employed to search for genes linked to phenotypes/traits of interest. Because of the ease of maintaining rodent malaria parasites in laboratory mice, many genetic crosses of rodent malaria parasites have been performed to map the parasite genes contributing to malaria parasite development, drug resistance, host immune response, and disease pathogenesis. Drs. Richard Carter, David Walliker, and colleagues at the University of Edinburgh, UK, were the pioneers in developing the systems for genetic mapping of malaria parasite traits, including characterization of genetic markers to follow the inheritance and recombination of parasite chromosomes and performing the first genetic cross using rodent malaria parasites. Additionally, many genetic crosses of inbred mice have been performed to link mouse chromosomal loci to the susceptibility to malaria parasite infections. In this chapter, we review and discuss past and recent advances in genetic marker development, performing genetic crosses, and genetic mapping of both parasite and host genes. Genetic mappings using models of rodent malaria parasites and inbred mice have contributed greatly to our understanding of malaria, including parasite development within their hosts, mechanism of drug resistance, and host-parasite interaction.


Asunto(s)
Malaria , Parásitos , Animales , Susceptibilidad a Enfermedades , Resistencia a Medicamentos/genética , Marcadores Genéticos , Malaria/parasitología , Ratones , Roedores , Virulencia
12.
Adv Sci (Weinh) ; 9(22): e2103701, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35635376

RESUMEN

Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) play critical roles in the innate immunity against infectious diseases and are required to link pathogen DNA sensing to immune responses. However, the mechanisms by which cGAS-STING-induced cytokines suppress the adaptive immune response against malaria infections remain poorly understood. Here, cGAS-STING signaling is identified to play a detrimental role in regulating anti-malaria immunity. cGAS or STING deficiency in mice markedly prolongs mouse survival during lethal malaria Plasmodium yoelii nigeriensis N67C infections by reducing late interleukin (IL)-6 production. Mechanistically, cGAS/STING recruits myeloid differentiation factor 88 (MyD88) and specifically induces the p38-dependent signaling pathway for late IL-6 production, which, in turn, expands CD11b+ Ly6Chi proinflammatory monocytes to inhibit immunity. Moreover, the blockage or ablation of the cGAS-STING-MyD88-p38-IL-6 signaling axis or the depletion of CD11b+ Ly6Chi proinflammatory monocytes provides mice a significant survival benefit during N67C and other lethal malaria-strain infections. Taken together, these findings identify a previously unrecognized detrimental role of cGAS-STING-MyD88-p38 axis in infectious diseases through triggering the late IL-6 production and proinflammatory monocyte expansion and provide insight into how targeting the DNA sensing pathway, dysregulated cytokines, and proinflammatory monocytes enhances immunity against infection.


Asunto(s)
Malaria , Monocitos , Animales , ADN , Interleucina-6/metabolismo , Malaria/inmunología , Malaria/mortalidad , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Monocitos/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
13.
BMC Genomics ; 22(1): 303, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902452

RESUMEN

BACKGROUND: Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of P. y. yoelii YM (or 17XL) and non-lethal strains of P. y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. RESULTS: We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. CONCLUSIONS: The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria.


Asunto(s)
Malaria , Parásitos , Plasmodium yoelii , Animales , Plasmodium yoelii/genética , Roedores , Transcriptoma
14.
Artículo en Inglés | MEDLINE | ID: mdl-35282332

RESUMEN

Malaria is a deadly disease that affects the health of hundreds of millions of people annually. There are five Plasmodium parasite species that can naturally infect humans, including Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. Some of the parasites can also infect various non-human primates. Parasites mainly infecting monkeys such as Plasmodium cynomolgi (in fact P. knowlesi was considered as a parasite of monkeys for years) can also be transmitted to human hosts. Recently, many new Plasmodium species were discovered in African apes, and it is possible that some of the parasites can be transmitted to humans in the future. Here, we searched PubMed and the internet via Google and selected articles concerning zoonotic transmission and evolution of selected malaria parasite species. We reviewed the current advances in the relevant topics emphasizing on transmissions of malaria parasites between humans and non-human primates. We also briefly discuss the transmissions of some avian malaria parasites between wild birds and domestic fowls. Zoonotic malaria transmissions are widespread, which poses a threat to public health. More studies on parasite species identification in non-human primates, transmission, and evolution are needed to reduce or prevent transmission of malaria parasites from non-human primates to humans.

15.
Front Cell Infect Microbiol ; 10: 594621, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33344264

RESUMEN

Type I interferons (IFN-Is) are important cytokines playing critical roles in various infections, autoimmune diseases, and cancer. Studies have also shown that IFN-Is exhibit 'conflicting' roles in malaria parasite infections. Malaria parasites have a complex life cycle with multiple developing stages in two hosts. Both the liver and blood stages of malaria parasites in a vertebrate host stimulate IFN-I responses. IFN-Is have been shown to inhibit liver and blood stage development, to suppress T cell activation and adaptive immune response, and to promote production of proinflammatory cytokines and chemokines in animal models. Different parasite species or strains trigger distinct IFN-I responses. For example, a Plasmodium yoelii strain can stimulate a strong IFN-I response during early infection, whereas its isogenetic strain does not. Host genetic background also greatly influences IFN-I production during malaria infections. Consequently, the effects of IFN-Is on parasitemia and disease symptoms are highly variable depending on the combination of parasite and host species or strains. Toll-like receptor (TLR) 7, TLR9, melanoma differentiation-associated protein 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) coupled with stimulator of interferon genes (STING) are the major receptors for recognizing parasite nucleic acids (RNA/DNA) to trigger IFN-I responses. IFN-I levels in vivo are tightly regulated, and various novel molecules have been identified to regulate IFN-I responses during malaria infections. Here we review the major findings and progress in ligand recognition, signaling pathways, functions, and regulation of IFN-I responses during malaria infections.


Asunto(s)
Interferón Tipo I , Malaria , Plasmodium yoelii , Inmunidad Adaptativa , Animales , Parasitemia
16.
Front Immunol ; 11: 1805, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193291

RESUMEN

Parasites, bacteria, and viruses pose serious threats to public health. Many parasite infections, including infections of protozoa and helminths, can inhibit inflammatory responses and impact disease outcomes caused by viral, bacterial, or other parasitic infections. Type I interferon (IFN-I) has been recognized as an essential immune effector in the host defense against various pathogens. In addition, IFN-I responses induced by co-infections with different pathogens may vary according to the host genetic background, immune status, and pathogen burden. However, there is only limited information on the roles of IFN-I in co-infections with parasites and viruses, bacteria, or other parasites. This review summarizes some recent findings on the roles of IFN-I in co-infections with parasites, including Leishmania spp., Plasmodium spp., Eimeria maxima, Heligmosomoides polygyrus, Brugia malayi, or Schistosoma mansoni, and viruses or bacteria and co-infections with different parasites (such as co-infection with Neospora caninum and Toxoplasma gondii, and co-infection with Plasmodium spp. and H. polygyrus). The potential mechanisms of host responses associated with co-infections, which may provide targets for immune intervention and therapies of the co-infections, are also discussed.


Asunto(s)
Bacterias/inmunología , Infecciones Bacterianas/inmunología , Coinfección , Interferón Tipo I/inmunología , Parásitos/inmunología , Enfermedades Parasitarias/inmunología , Virosis/inmunología , Virus/inmunología , Animales , Bacterias/patogenicidad , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/terapia , Infecciones Bacterianas/virología , Interacciones Huésped-Parásitos , Humanos , Interferón Tipo I/metabolismo , Parásitos/patogenicidad , Enfermedades Parasitarias/metabolismo , Enfermedades Parasitarias/parasitología , Enfermedades Parasitarias/terapia , Transducción de Señal , Virosis/metabolismo , Virosis/terapia , Virosis/virología , Virus/patogenicidad
17.
Front Cell Infect Microbiol ; 10: 587933, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194831

RESUMEN

Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.


Asunto(s)
Antimaláricos , Malaria , Parásitos , Enfermedades Parasitarias , Animales , Interacciones Huésped-Parásitos , Humanos , Malaria/prevención & control
18.
Proc Natl Acad Sci U S A ; 117(32): 19465-19474, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32709745

RESUMEN

Infection by malaria parasites triggers dynamic immune responses leading to diverse symptoms and pathologies; however, the molecular mechanisms responsible for these reactions are largely unknown. We performed Trans-species Expression Quantitative Trait Locus analysis to identify a large number of host genes that respond to malaria parasite infections. Here we functionally characterize one of the host genes called receptor transporter protein 4 (RTP4) in responses to malaria parasite and virus infections. RTP4 is induced by type I IFN (IFN-I) and binds to the TANK-binding kinase (TBK1) complex where it negatively regulates TBK1 signaling by interfering with expression and phosphorylation of both TBK1 and IFN regulatory factor 3. Rtp4-/- mice were generated and infected with malaria parasite Plasmodiun berghei ANKA. Significantly higher levels of IFN-I response in microglia, lower parasitemia, fewer neurologic symptoms, and better survival rates were observed in Rtp4-/- than in wild-type mice. Similarly, RTP4 deficiency significantly reduced West Nile virus titers in the brain, but not in the heart and the spleen, of infected mice, suggesting a specific role for RTP4 in brain infection and pathology. This study reveals functions of RTP4 in IFN-I response and a potential target for therapy in diseases with neuropathology.


Asunto(s)
Encéfalo/patología , Interferón Tipo I/metabolismo , Malaria Cerebral/patología , Chaperonas Moleculares/metabolismo , Animales , Encéfalo/parasitología , Encéfalo/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Factor 3 Regulador del Interferón , Malaria Cerebral/metabolismo , Malaria Cerebral/parasitología , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Chaperonas Moleculares/genética , Fosforilación , Plasmodium berghei/fisiología , Plasmodium yoelii/fisiología , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Fiebre del Nilo Occidental/metabolismo , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/fisiología
19.
Proc Natl Acad Sci U S A ; 117(28): 16567-16578, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32606244

RESUMEN

Malaria infection induces complex and diverse immune responses. To elucidate the mechanisms underlying host-parasite interaction, we performed a genetic screen during early (24 h) Plasmodium yoelii infection in mice and identified a large number of interacting host and parasite genes/loci after transspecies expression quantitative trait locus (Ts-eQTL) analysis. We next investigated a host E3 ubiquitin ligase gene (March1) that was clustered with interferon (IFN)-stimulated genes (ISGs) based on the similarity of the genome-wide pattern of logarithm of the odds (LOD) scores (GPLS). March1 inhibits MAVS/STING/TRIF-induced type I IFN (IFN-I) signaling in vitro and in vivo. However, in malaria-infected hosts, deficiency of March1 reduces IFN-I production by activating inhibitors such as SOCS1, USP18, and TRIM24 and by altering immune cell populations. March1 deficiency increases CD86+DC (dendritic cell) populations and levels of IFN-γ and interleukin 10 (IL-10) at day 4 post infection, leading to improved host survival. T cell depletion reduces IFN-γ level and reverse the protective effects of March1 deficiency, which can also be achieved by antibody neutralization of IFN-γ. This study reveals functions of MARCH1 (membrane-associated ring-CH-type finger 1) in innate immune responses and provides potential avenues for activating antimalaria immunity and enhancing vaccine efficacy.


Asunto(s)
Malaria/inmunología , Plasmodium yoelii/fisiología , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Parásitos , Humanos , Inmunidad Innata , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Malaria/enzimología , Malaria/genética , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasmodium yoelii/inmunología , Ubiquitina-Proteína Ligasas/genética
20.
Trends Parasitol ; 36(9): 735-744, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32586776

RESUMEN

Artemisinin and its derivatives (ART) are crucial first-line antimalarial drugs that rapidly clear parasitemia, but recrudescences of the infection frequently follow ART monotherapy. For this reason, ART must be used in combination with one or more partner drugs that ensure complete cure. The ability of malaria parasites to survive ART monotherapy may relate to an innate growth bistability phenomenon whereby a fraction of the drug-exposed population enters into metabolic quiescence (dormancy) as persister forms. Characterization of the events that underlie entry and waking from persistence may lead to lasting breakthroughs in malaria chemotherapy that can prevent recrudescences and protect the future of ART-based combination therapies.


Asunto(s)
Artemisininas/farmacología , Resistencia a Medicamentos , Plasmodium/efectos de los fármacos , Antimaláricos/farmacología , Humanos , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...