Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Commun ; : 101063, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39138866

RESUMEN

Efficient genotype-independent transformation and genome editing is highly desirable for plant biotechnology research and product development efforts. We have developed a novel approach to enable fast, high-throughput and genotype-flexible Agrobacterium-mediated transformation using the important soybean crop as a test system. This new method is called GiFT (Genotype-independent Fast Transformation) and involves only a few simple steps. The method uses germinated seeds as explants and DNA delivery is achieved through Agrobacterium infection of wounded explants as in conventional in vitro-based method. Following infection, the wounded explants are incubated in liquid medium with sublethal level of selection and then directly transplanted to soil. The transplanted seedlings are then selected with herbicide spray for three weeks. The time required from initiation to fully established healthy T0 transgenic events is about 35 days. The GiFT method requires minimal in vitro manipulation or use of tissue culture media. Since the regeneration is in planta, the GiFT method is thus highly genotype flexible, which we have demonstrated via successful transformation of elite germplasms from diverse genetic backgrounds. We also show that the soybean GiFT method can be applied to both conventional binary vectors and CRISPR-Cas12a vectors for genome editing applications. T1 progeny analyses demonstrated that the events had a high inheritance rate and could be used for genome engineering applications. By minimizing the need for tissue culture, the described novel approach significantly improves operational efficiency while greatly reducing personnel and supply cost. It is the first industry-scale transformation method utilizing in planta selection in a major field crop.

2.
Plant Physiol ; 195(3): 2158-2175, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38513701

RESUMEN

Gossypium barbadense, which is one of several species of cotton, is well known for its superior fiber quality. However, the genetic basis of its high-quality fiber remains largely unexplored. Here, we resequenced 269 G. barbadense accessions. Phylogenetic structure analysis showed that the set of accessions was clustered into 3 groups: G1 and G2 mainly included modern cultivars from Xinjiang, China, and G3 was related to widely introduced accessions in different regions worldwide. A genome-wide association study of 5 fiber quality traits across multiple field environments identified a total of 512 qtls (main-effect QTLs) and 94 qtlEs (QTL-by-environment interactions) related to fiber quality, of which 292 qtls and 57 qtlEs colocated with previous studies. We extracted the genes located in these loci and performed expression comparison, local association analysis, and introgression segment identification. The results showed that high expression of hormone-related genes during fiber development, introgressions from Gossypium hirsutum, and the recombination of domesticated elite allelic variation were 3 major contributors to improve the fiber quality of G. barbadense. In total, 839 candidate genes with encoding region variations associated with elite fiber quality were mined. We confirmed that haplotype GB_D03G0092H traced to G. hirsutum introgression, with a 1-bp deletion leading to a frameshift mutation compared with GB_D03G0092B, significantly improved fiber quality. GB_D03G0092H is localized in the plasma membrane, while GB_D03G0092B is in both the nucleus and plasma membrane. Overexpression of GB_D03G0092H in Arabidopsis (Arabidopsis thaliana) significantly improved the elongation of longitudinal cells. Our study systematically reveals the genetic basis of the superior fiber quality of G. barbadense and provides elite segments and gene resources for breeding high-quality cotton cultivars.


Asunto(s)
Fibra de Algodón , Perfilación de la Expresión Génica , Genoma de Planta , Estudio de Asociación del Genoma Completo , Gossypium , Sitios de Carácter Cuantitativo , Gossypium/genética , Fibra de Algodón/análisis , Sitios de Carácter Cuantitativo/genética , Filogenia , Haplotipos/genética , Regulación de la Expresión Génica de las Plantas
3.
Int J Hyg Environ Health ; 257: 114339, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401404

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organic chemicals with potential endocrine-disrupting effects, and have been found to impair the physical growth of offspring in both experimental and epidemiological studies. We aimed to investigate the effects of prenatal PFAS exposure on repeated measurements of multiple anthropometric indicators in infants. METHOD: PFAS were measured in serum samples collected from pregnant women at 12-16 gestational weeks. We calculated z-scores for the weight-for-age (WAZ), weight-for-length (WLZ), head circumference-for-age (HCZ), arm circumference-for-age (ACZ), triceps skinfold-for-age (TSZ), and subscapular skinfold-for-age (SSZ) at birth, 6 months, and 12 months of age according to the child growth standards of the World Health Organization (WHO) for anthropometric indicators. A total of 964 mother-infant pairs were included. A multivariate linear regression was performed to examine the associations between prenatal PFAS concentrations and anthropometric indicators at each time point. A generalized estimating equation (GEE) model was used to examine the longitudinal effects of PFAS exposure on repeated measurements of anthropometric indicators. Ultimately, a Bayesian kernel machine regression (BKMR) model was used to assess the joint effects of the PFAS mixture on anthropometric indicators. RESULTS: In GEE models, perfluorododecanoic acid (PFDoA) in the high tertile group was associated with increased WAZ/WLZ, with ß values (95% confidence intervals (CI)) of 0.12 (0.00, 0.23) and 0.18 (0.03, 0.32), respectively. Perfluorononanoic acid (PFNA) was associated with increased ACZ in the middle and high tertile groups. The BKMR models also presented the associations of the PFAS mixture with increased WAZ/WLZ throughout infancy, with more profound effects in females. Meanwhile, a pattern of inverse associations was observed between the perfluorooctanoic acid (PFOA) concentrations in the high tertile group and decreased WAZ, WLZ, and HCZ in males. In addition, the associations between PFAS and increased TSZ/SSZ at birth were identified by both linear regression and BKMR models. CONCLUSION: Prenatal PFAS exposure (PFNA and PFDoA) was associated with increased infant anthropometry, especially in female infants, while prenatal PFOA exposure was associated with decreased weight, and head and arm circumference in male infants. The findings indicate that prenatal PFAS exposure may impair the growth trajectory of offspring.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Ácidos Grasos , Fluorocarburos , Ácidos Láuricos , Efectos Tardíos de la Exposición Prenatal , Recién Nacido , Lactante , Niño , Humanos , Masculino , Femenino , Embarazo , Estudios Prospectivos , Teorema de Bayes , Antropometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...