Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Cell Res ; 32(9): 843-854, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35840807

RESUMEN

The sinoatrial node (SAN) is the origin of the electrical signals for rhythmic heartbeats in mammals. The spontaneous firing of SAN pacemaker cells (SANPCs) triggers cardiac contraction. 'Local Ca2+ release' (LCR), a unique cellular activity, acts as the 'engine' of the spontaneous firing of SANPCs. However, the mechanism of LCR initiation remains unclear. Here, we report that endogenous glutamate drives LCRs in SANPCs. Using a glutamate sensor, we unraveled a tight correlation between glutamate accumulation and LCR occurrence, indicating a potential relationship between glutamate and LCRs. Intracellular application of glutamate significantly enhanced the LCRs in both intact and permeabilized SANPCs. Mechanistically, we revealed that mitochondrial excitatory amino acid transporter 1 (EAAT1)-dependent mitochondrial glutamate import promoted ROS generation, which in turn led to the oxidation of Ca2+-handling proteins, ultimately resulting in enhanced LCRs. Importantly, EAAT1 depletion reduced both the spontaneous firing rates of isolated SANPCs and the heart rate in vitro and in vivo, suggesting the central role of EAAT1 as a glutamate transporter in the regulation of cardiac autonomic rhythm. In conclusion, our results indicate that glutamate serves as an LCR igniter in SANPCs, adding a potentially important element to the coupled-clock theory that explains the origin of spontaneous firing. These findings shed new light on the future prevention and treatment of cardiac pacemaker cell-related arrhythmias.


Asunto(s)
Ácido Glutámico , Nodo Sinoatrial , Animales , Calcio/metabolismo , Ácido Glutámico/metabolismo , Mamíferos , Miocitos Cardíacos/metabolismo , Nodo Sinoatrial/metabolismo
3.
J Cell Mol Med ; 25(9): 4408-4419, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33793066

RESUMEN

Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of cellular antioxidant defence. We previously showed that SFN prevented Ang II-induced cardiac damage via activation of Nrf2. However, the underlying mechanism of SFN's persistent cardiac protection remains unclear. This study aimed to explore the potential of SFN in activating cardiac Nrf2 through epigenetic mechanisms. Wild-type mice were injected subcutaneously with Ang II, with or without SFN. Administration of chronic Ang II-induced cardiac inflammatory factor expression, oxidative damage, fibrosis and cardiac remodelling and dysfunction, all of which were effectively improved by SFN treatment, coupled with an up-regulation of Nrf2 and downstream genes. Bisulfite genome sequencing and chromatin immunoprecipitation (ChIP) were performed to detect the methylation level of the first 15 CpGs and histone H3 acetylation (Ac-H3) status in the Nrf2 promoter region, respectively. The results showed that SFN reduced Ang II-induced CpG hypermethylation and promoted Ac-H3 accumulation in the Nrf2 promoter region, accompanied by the inhibition of global DNMT and HDAC activity, and a decreased protein expression of key DNMT and HDAC enzymes. Taken together, SFN exerts its cardioprotective effect through epigenetic modification of Nrf2, which may partially contribute to long-term activation of cardiac Nrf2.


Asunto(s)
Angiotensina II/toxicidad , Cardiomiopatías/prevención & control , Epigénesis Genética , Regulación de la Expresión Génica/efectos de los fármacos , Isotiocianatos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Sulfóxidos/farmacología , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Vasoconstrictores/toxicidad
4.
Cell Res ; 31(9): 951-964, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33824424

RESUMEN

As an excitatory transmitter system, the glutamatergic transmitter system controls excitability and conductivity of neurons. Since both cardiomyocytes and neurons are excitable cells, we hypothesized that cardiomyocytes may also be regulated by a similar system. Here, we have demonstrated that atrial cardiomyocytes have an intrinsic glutamatergic transmitter system, which regulates the generation and propagation of action potentials. First, there are abundant vesicles containing glutamate beneath the plasma membrane of rat atrial cardiomyocytes. Second, rat atrial cardiomyocytes express key elements of the glutamatergic transmitter system, such as the glutamate metabolic enzyme, ionotropic glutamate receptors (iGluRs), and glutamate transporters. Third, iGluR agonists evoke iGluR-gated currents and decrease the threshold of electrical excitability in rat atrial cardiomyocytes. Fourth, iGluR antagonists strikingly attenuate the conduction velocity of electrical impulses in rat atrial myocardium both in vitro and in vivo. Knockdown of GRIA3 or GRIN1, two highly expressed iGluR subtypes in atria, drastically decreased the excitatory firing rate and slowed down the electrical conduction velocity in cultured human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocyte monolayers. Finally, iGluR antagonists effectively prevent and terminate atrial fibrillation in a rat isolated heart model. In addition, the key elements of the glutamatergic transmitter system are also present and show electrophysiological functions in human atrial cardiomyocytes. In conclusion, our data reveal an intrinsic glutamatergic transmitter system directly modulating excitability and conductivity of atrial cardiomyocytes through controlling iGluR-gated currents. Manipulation of this system may open potential new avenues for therapeutic intervention of cardiac arrhythmias.


Asunto(s)
Fibrilación Atrial , Células Madre Pluripotentes Inducidas , Potenciales de Acción , Animales , Atrios Cardíacos , Humanos , Miocitos Cardíacos , Ratas
5.
Protein Cell ; 12(7): 545-556, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33548033

RESUMEN

Activation of the heart normally begins in the sinoatrial node (SAN). Electrical impulses spontaneously released by SAN pacemaker cells (SANPCs) trigger the contraction of the heart. However, the cellular nature of SANPCs remains controversial. Here, we report that SANPCs exhibit glutamatergic neuron-like properties. By comparing the single-cell transcriptome of SANPCs with that of cells from primary visual cortex in mouse, we found that SANPCs co-clustered with cortical neurons. Tissue and cellular imaging confirmed that SANPCs contained key elements of glutamatergic neurotransmitter system, expressing genes encoding glutamate synthesis pathway (Gls), ionotropic and metabotropic glutamate receptors (Grina, Gria3, Grm1 and Grm5), and glutamate transporters (Slc17a7). SANPCs highly expressed cell markers of glutamatergic neurons (Snap25 and Slc17a7), whereas Gad1, a marker of GABAergic neurons, was negative. Functional studies revealed that inhibition of glutamate receptors or transporters reduced spontaneous pacing frequency of isolated SAN tissues and spontaneous Ca2+ transients frequency in single SANPC. Collectively, our work suggests that SANPCs share dominant biological properties with glutamatergic neurons, and the glutamatergic neurotransmitter system may act as an intrinsic regulation module of heart rhythm, which provides a potential intervention target for pacemaker cell-associated arrhythmias.


Asunto(s)
Relojes Biológicos/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Corteza Visual Primaria/metabolismo , Nodo Sinoatrial/metabolismo , Transcriptoma , Potenciales de Acción/fisiología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Calcio/metabolismo , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Microglía/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Corteza Visual Primaria/citología , Receptores Ionotrópicos de Glutamato/clasificación , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/clasificación , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Análisis de la Célula Individual , Nodo Sinoatrial/citología , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
6.
Cancer Manag Res ; 11: 6245-6252, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31360073

RESUMEN

Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two homologous transcriptional coactivators and the final effectors of the Hippo signaling transduction pathway. The transcriptional activity of YAP/TAZ is dependent on their recruitment to the nucleus, which promotes binding to the transcription factor of TEA domain family members 1-4 (TEAD1-4). In Hippo-signaling pathway, YAP/TAZ is inactivated and its translocation to the nucleus is blocked via a core kinase cascade stimulated by a variety of upstream signals, such as G-protein-coupled receptor signaling, mechanical pressure, and adherens junction signaling. This pathway plays a very important role in regulating organ size, tissue homeostasis, and tumor development. In recent years, many studies have reported upregulation or nuclear localization of YAP/TAZ in a number of human malignancies, such as breast cancer, melanoma, lung cancer, especially squamous cell carcinoma in different organs. A large number of experiments demonstrate that YAP/TAZ activation promotes cancer formation, progression, and metastasis. Therefore, in this review, we summarize the evidence of regulation and function of YAP/TAZ and discuss its role in squamous cell carcinoma. Collectively, this summary strongly suggests that targeting aberrant YAP/TAZ activation is a promising strategy for the suppression of squamous cell carcinoma.

7.
Oxid Med Cell Longev ; 2018: 5438179, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977456

RESUMEN

Sulforaphane (SFN), a compound derived from cruciferous vegetables that has been shown to be safe and nontoxic, with minimal/no side effects, has been extensively studied due to its numerous bioactivities, such as anticancer and antioxidant activities. SFN exerts its anticancer effects by modulating key signaling pathways and genes involved in the induction of apoptosis, cell cycle arrest, and inhibition of angiogenesis. SFN also upregulates a series of cytoprotective genes by activating nuclear factor erythroid-2- (NF-E2-) related factor 2 (Nrf2), a critical transcription factor activated in response to oxidative stress; Nrf2 activation is also involved in the cancer-preventive effects of SFN. Accumulating evidence supports that epigenetic modification is an important factor in carcinogenesis and cancer progression, as epigenetic alterations often contribute to the inhibition of tumor-suppressor genes and the activation of oncogenes, which enables cells to acquire cancer-promoting properties. Studies on the mechanisms underlying the anticancer effects of SFN have shown that SFN can reverse such epigenetic alterations in cancers by targeting DNA methyltransferases (DNMTs), histone deacetyltransferases (HDACs), and noncoding RNAs. Therefore, in this review, we will discuss the anticancer activities of SFN and its mechanisms, with a particular emphasis on epigenetic modifications, including epigenetic reactivation of Nrf2.


Asunto(s)
Anticarcinógenos/farmacología , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Isotiocianatos/farmacología , Factor 2 Relacionado con NF-E2/biosíntesis , Animales , Humanos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sulfóxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA