Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Autophagy ; 19(11): 2934-2957, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37450577

RESUMEN

Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, Pik3c3, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.Abbreviations: ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tubastatin A; TUBB3: tubulin beta 3 class III; TUNEL: TdT-mediated dUTP nick-end labeling; UB: ubiquitin; UVRAG: UV radiation resistance associated gene; VIM: vimentin; WT1: WT1 transcription factor; ZBTB16: zinc finger and BTB domain containing 16.


Asunto(s)
Autofagia , Células de Sertoli , Masculino , Animales , Ratones , Autofagia/genética , Fosforilación , Polaridad Celular , Ubiquitina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo
2.
Adv Sci (Weinh) ; 10(18): e2300043, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37083226

RESUMEN

Mammalian oogenesis features reliance on the mRNAs produced and stored during early growth phase. These are essential for producing an oocyte competent to undergo meiotic maturation and embryogenesis later when oocytes are transcriptionally silent. The fate of maternal mRNAs hence ensures the success of oogenesis and the quality of the resulting eggs. Nevertheless, how the fate of maternal mRNAs is determined remains largely elusive. RNA-binding proteins (RBPs) are crucial regulators of oogenesis, yet the identity of the full complement of RBPs expressed in oocytes is unknown. Here, a global view of oocyte-expressed RBPs is presented: mRNA-interactome capture identifies 1396 RBPs in mouse oocytes. An analysis of one of these RBPs, LSM family member 14 (LSM14B), demonstrates that this RBP is specific to oocytes and associated with many networks essential for oogenesis. Deletion of Lsm14b results in female-specific infertility and a phenotype characterized by oocytes incompetent to complete meiosis and early embryogenesis. LSM14B serves as an interaction hub for proteins and mRNAs throughout oocyte development and regulates translation of a subset of its bound mRNAs. Therefore, RNP complexes tethered by LSM14B are found exclusively in oocytes and are essential for the control of maternal mRNA fate and oocyte development.


Asunto(s)
Oocitos , ARN Mensajero Almacenado , Femenino , Animales , Ratones , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Oocitos/metabolismo , Oogénesis/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/metabolismo
3.
Commun Biol ; 5(1): 1327, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463362

RESUMEN

As the time of ovulation draws near, mouse spermatozoa move out of the isthmic reservoir, which is a prerequisite for fertilization. However, the molecular mechanism remains unclear. The present study revealed that mouse cumulus cells of oocytes-cumulus complexes (OCCs) expressed transforming growth factor-ß ligand 1 (TGFB1), whereas ampullary epithelial cells expressed the TGF-ß receptors, TGFBR1 and TGFBR2, and all were upregulated by luteinizing hormone (LH)/human chorionic gonadotropin (hCG). OCCs and TGFB1 increased natriuretic peptide type C (NPPC) expression in cultured ampullae via TGF-ß signaling, and NPPC treatment promoted spermatozoa moving out of the isthmic reservoir of the preovulatory oviducts. Deletion of Tgfb1 in cumulus cells and Tgfbr2 in ampullary epithelial cells blocked OCC-induced NPPC expression and spermatozoa moving out of the isthmic reservoir, resulting in compromised fertilization and fertility. Oocyte-derived paracrine factors were required for promoting cumulus cell expression of TGFB1. Therefore, oocyte-dependent and cumulus cell-derived TGFB1 promotes the expression of NPPC in oviductal ampulla, which is critical for sperm migration in the oviduct and subsequent fertilization.


Asunto(s)
Péptido Natriurético Tipo-C , Oocitos , Oviductos , Ovulación , Transporte Espermático , Espermatozoides , Animales , Femenino , Masculino , Ratones , Oocitos/metabolismo , Oocitos/fisiología , Oviductos/metabolismo , Oviductos/fisiología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Semen , Espermatozoides/metabolismo , Péptido Natriurético Tipo-C/genética , Péptido Natriurético Tipo-C/metabolismo , Ovulación/genética , Ovulación/metabolismo , Fertilización/genética , Fertilización/fisiología , Transporte Espermático/genética , Transporte Espermático/fisiología
4.
Cell Death Dis ; 13(11): 963, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396932

RESUMEN

Germ cell division and differentiation require intimate contact and interaction with the surrounding somatic cells. Luteinizing hormone (LH) triggers epidermal growth factor (EGF)-like growth factors to promote oocyte maturation and developmental competence by activating EGF receptor (EGFR) in somatic cells. Here, we showed that LH-EGFR signaling-activated sphingosine kinases (SphK) in somatic cells. The activation of EGFR by EGF increased S1P and calcium levels in cumulus-oocyte complexes (COCs), and decreased the binding affinity of natriuretic peptide receptor 2 (NPR2) for natriuretic peptide type C (NPPC) to release the cGMP-mediated meiotic arrest. These functions of EGF were blocked by the SphK inhibitor SKI-II, which could be reversed by the addition of S1P. S1P also activated the Akt/mTOR cascade reaction in oocytes and promoted targeting protein for Xklp2 (TPX2) accumulation and oocyte developmental competence. Specifically depleting Sphk1/2 in somatic cells reduced S1P levels and impaired oocyte meiotic maturation and developmental competence, resulting in complete female infertility. Collectively, SphK-produced S1P in somatic cells serves as a functional transmitter of LH-EGFR signaling from somatic cells to oocytes: acting on somatic cells to induce oocyte meiotic maturation, and acting on oocytes to improve oocyte developmental competence.


Asunto(s)
Factor de Crecimiento Epidérmico , Oogénesis , Animales , Femenino , Ratones , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Péptidos Natriuréticos/metabolismo , Oocitos/metabolismo , Hormona Luteinizante/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)
5.
J Mol Cell Biol ; 14(7)2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36002018

RESUMEN

In mammals, the growth and maturation of oocytes within growing follicles largely depends on ovarian granulosa cells (GCs) in response to gonadotropin stimulation. Many signals have been shown to regulate GC proliferation and apoptosis. However, whether the tyrosine phosphatase SHP2 is involved remains unclear. In this study, we identified the crucial roles of SHP2 in modulating GC proliferation and apoptosis. The production of both mature oocytes and pups was increased in mice with Shp2 specifically deleted in ovarian GCs via Fshr-Cre. Shp2 deletion simultaneously promoted GC proliferation and inhibited GC apoptosis. Furthermore, Shp2 deficiency promoted, while Shp2 overexpression inhibited, the proliferation of cultured primary mouse ovarian GCs and the human ovarian granulosa-like tumor cell line KGN in vitro. Shp2 deficiency promoted follicule-stimulating hormone (FSH)-activated phosphorylation of AKT in vivo. SHP2 deficiency reversed the inhibitory effect of hydrogen peroxide (H2O2) on AKT activation in KGN cells. H2O2 treatment promoted the interaction between SHP2 and the p85 subunit of PI3K in KGN cells. Therefore, SHP2 in GCs may act as a negative modulator to balance follicular development by suppressing PI3K/AKT signaling. The novel function of SHP2 in modulating proliferation and apoptosis of GCs provides a potential therapeutic target for the clinical treatment of follicle developmental dysfunction.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Femenino , Ratones , Humanos , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Células de la Granulosa/metabolismo , Tirosina/metabolismo , Tirosina/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/farmacología , Mamíferos
6.
Biol Reprod ; 107(1): 76-84, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35552649

RESUMEN

Coordinated development of the germline and the somatic compartments within a follicle is an essential prerequisite for creating a functionally normal oocyte. Bi-directional communication between the oocyte and the granulosa cells enables the frequent interchange of metabolites and signals that support the development and functions of both compartments. Mechanistic target of rapamycin (MTOR), a conserved serine/threonine kinase and a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation, is emerging as a major player that regulates many facets of oocyte and follicle development. Here, we summarized our recent observations on the role of oocyte- and granulosa cell-expressed MTOR in the control of the oocyte's and granulosa cell's own development, as well as the development of one another, and provided new data that further strengthen the role of cumulus cell-expressed MTOR in synchronizing oocyte and follicle development. Inhibition of MTOR induced oocyte meiotic resumption in cultured large antral follicles, as well as cumulus expansion and the expression of cumulus expansion-related transcripts in cumulus-oocyte complexes in vitro. In vivo, the activity of MTOR in cumulus cells was diminished remarkably by 4 h after hCG administration. These results thus suggest that activation of MTOR in cumulus cells contributes to the maintenance of oocyte meiotic arrest before the LH surge. Based on the observations made by us here and previously, we propose that MTOR is an essential mediator of the bi-directional communication between the oocyte and granulosa cells that regulates the development and function of both compartments.


Asunto(s)
Células de la Granulosa , Meiosis , Oocitos , Serina-Treonina Quinasas TOR , Animales , Femenino , Células de la Granulosa/metabolismo , Ratones , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
7.
Nat Cell Biol ; 23(9): 1013-1022, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34489574

RESUMEN

Piwi-interacting RNAs (piRNAs) are predominantly expressed in germ cells and function in gametogenesis in various species. However, Piwi-deficient female mice are fertile and mouse oocytes express a panel of small RNAs that do not appear to be widely representative of mammals. Thus, the function of piRNAs in mammalian oogenesis remains largely unclear. Here, we generated Piwil1- and Mov10l1-deficient golden hamsters and found that all female and male mutants were sterile, with severe defects in embryogenesis and spermatogenesis, respectively. In Piwil1-deficient female hamsters, the oocytes and embryos displayed aberrant transposon accumulation and extensive transcriptomic dysregulation, and the embryos were arrested at the two-cell stage with impaired zygotic genome activation. Moreover, PIWIL1-piRNAs exert a non-redundant function in silencing endogenous retroviruses in the oocytes and embryos. Together, our findings demonstrate that piRNAs are indispensable for generating functional germ cells in golden hamsters and show the value of this model species for piRNA studies in gametogenesis, especially those related to female infertility.


Asunto(s)
Desarrollo Embrionario/fisiología , Células Germinativas/metabolismo , Oocitos/metabolismo , ARN Interferente Pequeño/genética , Animales , Proteínas Argonautas/genética , Cricetinae , Fertilidad/fisiología , Masculino , Mesocricetus/genética , Espermatogénesis/genética , Testículo/metabolismo
8.
Am J Respir Cell Mol Biol ; 65(6): 646-657, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34251297

RESUMEN

Compromised endothelial-cell (EC) barrier function is a hallmark of inflammatory diseases. mTOR inhibitors, widely applied as clinical therapies, cause pneumonitis through mechanisms that are not yet fully understood. This study aimed to elucidate the EC mechanisms underlying the pathogenesis of pneumonitis caused by mTOR inhibition (mTORi). Mice with EC-specific deletion of mTOR complex components (Mtor, Rptor or Rictor) were administered LPS to induce pulmonary injury. Cultured ECs were treated with pharmacologic inhibitors, siRNA, or overexpression plasmids. EC barrier function was evaluated in vivo with Evans blue assay and in vitro by measurement of transendothelial electrical resistance and albumin flux. mTORi increased basal and TNFα-induced EC permeability, which was caused by myosin light chain (MLC) phosphorylation-dependent cell contraction. Inactivation of mTOR kinase activity by mTORi triggered PKCδ/p38/NF-κB signaling that significantly upregulated TNFα-induced MLCK (MLC kinase) expression, whereas Raptor promoted the phosphorylation of PKCα/MYPT1 independently of its interaction with mTOR, leading to suppression of MLCP (MLC phosphatase) activity. EC-specific deficiency in mTOR, Raptor or Rictor aggravated lung inflammation in LPS-treated mice. These findings reveal that mTORi induces PKC-dependent endothelial MLC phosphorylation, contraction, and hyperpermeability that promote pneumonitis.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/enzimología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inhibidores mTOR/efectos adversos , Neumonía/enzimología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Humanos , Lipopolisacáridos/toxicidad , Inhibidores mTOR/farmacología , Ratones , Ratones Noqueados , Cadenas Ligeras de Miosina/metabolismo , Permeabilidad , Fosforilación/efectos de los fármacos , Neumonía/inducido químicamente , Serina-Treonina Quinasas TOR/metabolismo
9.
Front Cell Dev Biol ; 9: 687522, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124073

RESUMEN

Completion of the first meiosis is an essential prerequisite for producing a functionally normal egg for fertilization and embryogenesis, but the precise mechanisms governing oocyte meiotic progression remains largely unclear. Here, we report that echinoderm microtubule associated protein (EMAP) like 1 (EML1), a member of the conserved EMAP family proteins, plays a crucial role in the control of oocyte meiotic progression in the mouse. Female mice carrying an ENU-induced nonsense mutation (c.1956T > A; p.Tyr652∗) of Eml1 are infertile, and the majority of their ovulated oocytes contain abnormal spindles and misaligned chromosomes. In accordance with the mutant oocyte phenotype, we find that EML1 is colocalized with spindle microtubules during the process of normal oocyte meiotic maturation, and knockdown (KD) of EML1 by specific morpholinos in the fully grown oocytes (FGOs) disrupts the integrity of spindles, and delays meiotic progression. Moreover, EML1-KD oocytes fail to progress to metaphase II (MII) stage after extrusion of the first polar body, but enter into interphase and form a pronucleus containing decondensed chromatins. Further analysis shows that EML1-KD impairs the recruitment of γ-tubulin and pericentrin to the spindle poles, as well as the attachment of kinetochores to microtubules and the proper inactivation of spindle assembly checkpoint at metaphase I (MI). The loss of EML1 also compromises the activation of maturation promoting factor around the time of oocyte resumption and completion of the first meiosis, which, when corrected by WEE1/2 inhibitor PD166285, efficiently rescues the phenotype of oocyte delay of meiotic resumption and inability of reaching MII. Through IP- mass spectrometry analysis, we identified that EML1 interacts with nuclear distribution gene C (NUDC), a critical mitotic regulator in somatic cells, and EML1-KD disrupts the specific localization of NUDC at oocyte spindles. Taken together, these data suggest that EML1 regulates acentrosomal spindle formation and the progression of meiosis to MII in mammalian oocytes, which is likely mediated by distinct mechanisms.

10.
Front Cell Dev Biol ; 9: 690536, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124077

RESUMEN

Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme catalyzing de novo biosynthesis of guanine nucleotides, aggregates under certain circumstances into a type of non-membranous filamentous macrostructure termed "cytoophidium" or "rod and ring" in several types of cells. However, the biological significance and underlying mechanism of IMPDH assembling into cytoophidium remain elusive. In mouse ovaries, IMPDH is reported to be crucial for the maintenance of oocyte-follicle developmental synchrony by providing GTP substrate for granulosa cell natriuretic peptide C/natriuretic peptide receptor 2 (NPPC/NPR2) system to produce cGMP for sustaining oocyte meiotic arrest. Oocytes and the associated somatic cells in the ovary hence render an exciting model system for exploring the functional significance of formation of IMPDH cytoophidium within the cell. We report here that IMPDH2 cytoophidium forms in vivo in the growing oocytes naturally and in vitro in the cumulus-enclosed oocytes treated with IMPDH inhibitor mycophenolic acid (MPA). Inhibition of IMPDH activity in oocytes and preimplantation embryos compromises oocyte meiotic and developmental competences and the development of embryos beyond the 4-cell stage, respectively. IMPDH cytoopidium also forms in vivo in the granulosa cells of the preovulatory follicles after the surge of luteinizing hormone (LH), which coincides with the resumption of oocyte meiosis and the reduction of IMPDH2 protein expression. In cultured COCs, MPA-treatment causes the simultaneous formation of IMPDH cytoopidium in cumulus cells and the resumption of meiosis in oocytes, which is mediated by the MTOR pathway and is prevented by guanosine supplementation. Therefore, our results indicate that cytoophidia do form in the oocytes and granulosa cells at particular stages of development, which may contribute to the oocyte acquisition of meiotic and developmental competences and the induction of meiosis re-initiation by the LH surge, respectively.

11.
Adv Sci (Weinh) ; 7(14): 2000531, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32714760

RESUMEN

Post-translational modification of proteins by N-linked glycosylation is crucial for many life processes. However, the exact contribution of N-glycosylation to mammalian female reproduction remains largely undefined. Here, DPAGT1, the enzyme that catalyzes the first step of protein N-glycosylation, is identified to be indispensable for oocyte development in mice. Dpagt1 missense mutation (c. 497A>G; p. Asp166Gly) causes female subfertility without grossly affecting other functions. Mutant females ovulate fewer eggs owing to defective development of growing follicles. Mutant oocytes have a thin and fragile zona pellucida (ZP) due to the reduction in glycosylation of ZP proteins, and display poor developmental competence after fertilization in vitro. Moreover, completion of the first meiosis is accelerated in mutant oocytes, which is coincident with the elevation of aneuploidy. Mechanistically, transcriptomic analysis reveals the downregulation of a number of transcripts essential for oocyte meiotic progression and preimplantation development (e.g., Pttgt1, Esco2, Orc6, and Npm2) in mutant oocytes, which could account for the defects observed. Furthermore, conditional knockout of Dpagt1 in oocytes recapitulates the phenotypes observed in Dpagt1 mutant females, and causes complete infertility. Taken together, these data indicate that protein N-glycosylation in oocytes is essential for female fertility in mammals by specific control of oocyte development.

12.
Cell Death Dis ; 10(8): 558, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332164

RESUMEN

Natriuretic peptide type C (NPPC) secreted by mural granulosa cells (MGCs) maintains oocyte meiotic arrest via the activation of guanylyl cyclase-linked natriuretic peptide receptor 2 (NPR2). Here, we investigated the effect of transforming growth factor (TGF)-ß on NPPC expression in MGCs and oocyte maturation. TGF-ß ligands (TGFB1 and TGFB3, but not TGFB2) and receptors (TGFBR1 and TGFBR2) were predominantly expressed in MGCs. The activation of the follicle-stimulating hormone (FSH) receptor by FSH/equine chorionic gonadotropin (eCG) increased the levels of TGFB1, TGFBR2, and TGF-ß downstream SMAD proteins in MGCs, which were decreased following the activation of the luteinizing hormone (LH) receptor by human chorionic gonadotropin (hCG). TGF-ß significantly increased the gene and protein levels of NPPC in cultured MGCs through SMAD3 binding to Nppc promoter regions. In the presence of FSH, TGF-ß further increased NPPC levels and inhibited oocyte meiotic resumption of cumulus-oocyte complexes (COCs). Moreover, Tgfbr2-specific depletion in granulosa cells using Fshr-Cre mice reduced NPPC mRNA and protein levels, resulting in the weak maintenance of oocyte meiotic arrest within large antral follicles. Tgfbr2 depletion also impaired follicle development, ovulation, and female fertility. Taken together, TGF-ß-promoted NPPC in MGCs is involved in maintaining oocyte meiotic arrest. FSH and LH could regulate NPPC levels in MGCs via TGF-ß and then control the process of oocyte meiosis.


Asunto(s)
Células de la Granulosa/metabolismo , Meiosis/genética , Péptido Natriurético Tipo-C/metabolismo , Oocitos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Células Cultivadas , Gonadotropina Coriónica/farmacología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Péptido Natriurético Tipo-C/genética , Oogénesis/genética , Folículo Ovárico/metabolismo , Ovulación/genética , Regiones Promotoras Genéticas , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/genética
13.
J Clin Endocrinol Metab ; 104(7): 2547-2560, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476103

RESUMEN

CONTEXT: Women with obesity usually need larger doses of FSH for ovarian stimulation, resulting in poor outcomes; however, the mechanism is still unclear. OBJECTIVE: To investigate the molecular regulation of FSH receptor (FSHR) expression associated with obesity. DESIGN: Case-control study to improve in vitro fertilization (IVF) outcomes. PATIENTS: Women with obesity (82) and women who were overweight (457) undergoing IVF and 1790 age-matched controls with normal weight from our reproductive medicine center. MAIN OUTCOME MEASURES: FSHR expression was decreased in parallel with body mass index (BMI), whereas the estradiol (E2) level on the human chorionic gonadotropin (hCG) trigger day was significantly lower. RESULTS: FSHR expression in human granulosa cells (hGCs), both mRNA (P = 0.02) and protein (P = 0.001) levels, was decreased in women who were overweight or obese. Both insulin (P < 0.001) and glucose (P = 0.0017) levels were positively correlated with BMI in fasting blood and follicle fluids (FFs) but not with FFs leptin level. We treated human granulosa-like tumor cells (KGN) cells with insulin; E2 production was compromised; the level of phosphorylated (p)-protein kinase B (p-Akt2) decreased, whereas p-glycogen synthase kinase 3 (GSK3) increased; and there were similar changes in hGCs from women with obesity. Stimulated hGCs from women with obesity with compound 21 (CP21), an inhibitor of GSK3ß, resulted in upregulated ß-catenin activation and increased FSHR expression. CP21 also increased the expression of insulin receptor substrate 1 and phosphatidylinositol 3-kinase (PI3K), as well as p-Akt2. CONCLUSIONS: Women with obesity in IVF were associated with reduced FSHR expression and E2 production caused by a dysfunctional insulin pathway. Decreased FSHR expression in hGCs from women with obesity and insulin-treated KGN cells could be rescued by an inhibitor of GSK3ß, which might be a potential target for the improvement of the impaired FSH-stimulation response in women with obesity.


Asunto(s)
Hormona Folículo Estimulante/administración & dosificación , Infertilidad Femenina/terapia , Insulina/metabolismo , Obesidad/metabolismo , Receptores de HFE/metabolismo , Adulto , Estudios de Casos y Controles , Relación Dosis-Respuesta a Droga , Estradiol/metabolismo , Femenino , Fertilización In Vitro/métodos , Líquido Folicular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Humanos , Infertilidad Femenina/sangre , Infertilidad Femenina/complicaciones , Insulina/análisis , Leptina/análisis , Leptina/metabolismo , Obesidad/sangre , Obesidad/complicaciones , Inducción de la Ovulación/métodos , Resultado del Tratamiento
14.
J Biomed Res ; 34(1): 44-53, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35081682

RESUMEN

The generation of a high-quality egg for reproduction requires faithful segregation of chromosome during oocyte meiosis. Here, we report that echinoderm microtubule-associated protein like 6 (EML6) is highly expressed in oocytes, and responsible for accurate segregation of homologous chromosomes in mice. Quantitative real-time RT-PCR and immunohistochemistry analyses revealed that EML6 was predominantly expressed by oocytes in the ovaries. Whole mount immunofluorescent staining showed that EML6 was colocalized with spindle microtubules in oocytes at various stages after meiotic resumption. This specialized localization was disrupted by nocodazole, the microtubule destabilizer, while enhanced by Taxol, a microtubule stabilizing reagent. In vivo knockdown of Eml6 expression by the specific siRNA resulted in chromosome misalignment and alteration in spindle dimension at both metaphase Ⅰ and Ⅱ stages, as well as the increased aneuploidy in the mature oocytes. Thus, these data suggest that EML family proteins participate in the control of oocyte meiotic division.

15.
Am J Transl Res ; 11(12): 7479-7491, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31934295

RESUMEN

The guinea pig is an excellent but underused animal model due to its reproductive biology, which poses difficulties in inducing superovulation, embryo manipulation in vitro, and embryo transfer. We examined the effects of cysteamine (Cys), leukemia inhibitory factor (LIF), and Y27632 on guinea pig oocyte in vitro maturation (IVM). Cumulus-oocyte complexes were collected from antral follicles and classified into three different types before IVM. Among type I oocytes, maturation rates to metaphase II (MII) were similar in basal maturation medium and medium supplemented with Cys or LIF (39.5-40.9%), but combined Cys and LIF treatment increased the MII rate to 61.8%. Supplementation with Y27632 alone or in combination with Cys and LIF dramatically reduced the MII rate (27.7-29.7%). Similar trends were observed for type II oocytes, although their overall MII rate was lower than that of type I oocytes. The MII rate was higher among oocytes collected from 2-month-old guinea pigs compared with those from 4-month-old guinea pigs (56.5 vs. 44.8%). The optimal IVM duration was 24 h (52.5%), as 36 or 48 h of IVM reduced the MII rate (32.8-42.5%). Furthermore, Y27632 reduced the presence of microfilaments in oocytes. These findings indicate that combined supplementation of maturation medium with Cys and LIF, but not Y27632, improves the maturation efficiency of guinea pig oocytes. This study provides an important scientific basis for further efforts toward guinea pig in vitro fertilization, cloning, and gene editing by establishing an animal model for human reproduction and related diseases.

16.
Proc Natl Acad Sci U S A ; 115(44): 11250-11255, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30333187

RESUMEN

Producing normal eggs for fertilization and species propagation requires completion of meiosis and protection of the genome from the ravages of retrotransposons. Mutation of Marf1 (meiosis regulator and mRNA stability factor 1) results in defects in both these key processes in mouse oocytes and thus in infertility. MARF1 was predicted to have ribonuclease activity, but the structural basis for the function of MARF1 and the contribution of its putative ribonuclease domain to the mutant oocyte phenotype was unknown. Therefore, we resolved the crystal structures of key domains of MARF1 and demonstrated by biochemical and mutagenic analyses that the ribonuclease activity of MARF1 controls oocyte meiotic progression and retrotransposon surveillance. The N-terminal NYN domain of MARF1 resembles the nuclease domains of Vpa0982, T4 RNase H, and MCPIP1 and contains four conserved aspartate residues, D178, D215, D246, and D272. The C-terminal LOTUS domain of MARF1 adopts a winged helix-turn-helix fold and binds ssRNA and dsRNA. Purified MARF1 cleaved ssRNAs in vitro, but this cleavage activity was abolished by mutations of conserved aspartates in its NYN domain and truncation of the LOTUS domain. Furthermore, a point mutation in the D272 residue in vivo caused a female-only infertile phenotype in mice, with failure of meiotic resumption and elevation of Line1 and Iap retrotransposon transcripts and DNA double-strand breaks in oocytes. Therefore, the ribonuclease activity of MARF1 controls oocyte meiosis and genome integrity. This activity depends upon conserved aspartic residues in the catalytic NYN domain and the RNA-binding activity of the LOTUS domain.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Genoma/genética , Homeostasis/genética , Oocitos/metabolismo , ARN/genética , Ribonucleasa H/metabolismo , Animales , Ácido Aspártico/genética , Dominio Catalítico/genética , Roturas del ADN de Doble Cadena , Femenino , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Meiosis/genética , Ratones , Mutación/genética , Fenotipo , Retroelementos/genética
17.
Proc Natl Acad Sci U S A ; 115(23): E5326-E5333, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784807

RESUMEN

MTOR (mechanistic target of rapamycin) is a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation. Here we show that conditional knockout (cKO) of Mtor in either primordial or growing oocytes caused infertility but differentially affected oocyte quality, granulosa cell fate, and follicular development. cKO of Mtor in nongrowing primordial oocytes caused defective follicular development leading to progressive degeneration of oocytes and loss of granulosa cell identity coincident with the acquisition of immature Sertoli cell-like characteristics. Although Mtor was deleted at the primordial oocyte stage, DNA damage accumulated in oocytes during their later growth, and there was a marked alteration of the transcriptome in the few oocytes that achieved the fully grown stage. Although oocyte quality and fertility were also compromised when Mtor was deleted after oocytes had begun to grow, these occurred without overtly affecting folliculogenesis or the oocyte transcriptome. Nevertheless, there was a significant change in a cohort of proteins in mature oocytes. In particular, down-regulation of PRC1 (protein regulator of cytokinesis 1) impaired completion of the first meiotic division. Therefore, MTOR-dependent pathways in primordial or growing oocytes differentially affected downstream processes including follicular development, sex-specific identity of early granulosa cells, maintenance of oocyte genome integrity, oocyte gene expression, meiosis, and preimplantation developmental competence.


Asunto(s)
Células de la Granulosa/citología , Oocitos/citología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Hormona Folículo Estimulante/sangre , Células de la Granulosa/enzimología , Células de la Granulosa/metabolismo , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Meiosis/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/enzimología , Oocitos/metabolismo , Oogénesis , Folículo Ovárico/citología , Folículo Ovárico/enzimología , Folículo Ovárico/metabolismo , Serina-Treonina Quinasas TOR/genética
18.
J Biomed Res ; 32(1): 58-67, 2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29353819

RESUMEN

Meiosis-arrest female 1 (MARF1) is a recently identified key oogenic regulator essential for the maintenance of female fertility and genome integrity in mice. However, the detailed functions and the underlying mechanisms of MARF1 remain elusive. Here, in an attempt to create a mouse model expressing fluorescent protein-tagged MARF1 to facilitate further exploration of the roles of MARF1 in oocytes, we produced a Marf1-eGFP knockin (KI) mouse line in which the C-terminal structure and function of MARF1 were interfered by its fusing eGFP peptide. Using these Marf1-eGFP-KI mice, we revealed, unexpectedly, the functions of MARF1 in the control of oocyte meiotic division. We found that the Marf1-eGFP-KI females ovulated mature oocytes with severe meiotic and developmental defects, and thus were infertile. Moreover, meiotic reinitiation was delayed while meiotic completion was accelerated in the KI-oocytes, which was coincident with the increased incidence of oocyte aneuploidy. Therefore, MARF1 is indispensable for maintaining the fidelity of homolog segregation during oocyte maturation, and this function relies on its C-terminal domains.

19.
Sci Rep ; 7(1): 1155, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28442784

RESUMEN

Cortical neurogenesis is a fundamental process of brain development that is spatiotemporally regulated by both intrinsic and extrinsic cues. Although recent evidence has highlighted the significance of transcription factors in cortical neurogenesis, little is known regarding the role of RNA-binding proteins (RBPs) in the post-transcriptional regulation of cortical neurogenesis. Here, we report that meiosis arrest female 1 (MARF1) is an RBP that is expressed during neuronal differentiation. Cortical neurons expressed the somatic form of MARF1 (sMARF1) but not the oocyte form (oMARF1). sMARF1 was enriched in embryonic brains, and its expression level decreased as brain development progressed. Overexpression of sMARF1 in E12.5 neuronal progenitor cells promoted neuronal differentiation, whereas sMARF1 knockdown decreased neuronal progenitor differentiation in vitro. We also examined the function of sMARF1 in vivo using an in utero electroporation technique. Overexpression of sMARF1 increased neuronal differentiation, whereas knockdown of sMARF1 inhibited differentiation in vivo. Moreover, using an RNase domain deletion mutant of sMARF1, we showed that the RNase domain is required for the effects of sMARF1 on cortical neurogenesis in vitro. Our results further elucidate the mechanisms of post-transcriptional regulation of cortical neurogenesis by RBPs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Corteza Cerebral/embriología , Neurogénesis , Proteínas de Unión al ARN/metabolismo , Ribonucleasas/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Ratones Endogámicos ICR , Células Madre Pluripotentes/fisiología
20.
J Cell Physiol ; 232(3): 585-595, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27301841

RESUMEN

In mammalian ovaries, follicle assembly requires proper germ cell cyst breakdown and the invasion of somatic cells to encapsulate individual oocytes. Abnormalities in this process lead to a number of pathologies such as premature ovarian failure and infertility. As a conserved pathway regulating cell growth and metabolism in response to growth factors and nutrients, the roles of mTOR signaling in follicular development have been extensively studied in recent years. However, its functions during follicle formation remain unknown. In this study, the expression of p-rpS6 (phospho-ribosomal proteinS6), a downstream marker of mTORC1, showed dynamic changes in perinatal ovaries. When E18.5 ovaries, which mainly contained germ cell nests, were incubated with the mTOR inhibitors Rapamycin and Torin1 for 24 h, follicle assembly was delayed with differential somatic cell invasion into germ cell cyst among the groups. After transplanting treated or untreated ovaries into kidney capsules of recipient ovariectomized mice, follicular development was blocked in treated ovaries, as shown by fewer antral follicles and a higher proportion of primordial follicles. Further studies showed a significant decrease in somatic cell proliferation and the expression of marker genes related to follicular development (Kitl, Kit, Gdf9, Bmp15, Zp3, and Amhr2) in treated ovaries. Moreover, the addition of KITL, a growth factor that is mainly produced by pregranulosa cells during germ cell nest breakdown, rescued the extension of follicle formation induced by mTOR inhibitors. These results suggest that KITL functions downstream of mTOR in somatic cells to regulate their communication with oocytes during follicle formation. J. Cell. Physiol. 232: 585-595, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Organogénesis , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Masculino , Ratones , Naftiridinas/farmacología , Organogénesis/efectos de los fármacos , Folículo Ovárico/citología , Folículo Ovárico/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Factor de Células Madre/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...